Sedletska Y, Giraud-Panis MJ, Malinge JM. Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr Med Chem Anticancer Agents. 2005;5:251–65. https://doi.org/10.2174/1568011053765967.
Article
CAS
PubMed
Google Scholar
Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther. 1987;34:155–66. https://doi.org/10.1016/0163-7258(87)90009-X.
Article
CAS
PubMed
Google Scholar
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7:573–84. https://doi.org/10.1038/nrc2167.
Article
CAS
PubMed
Google Scholar
Fichtinger-Schepman AMJ, Van der Veer JL, Den Hartog JHJ, Lohman PHM, Reedijk J. Adducts of the antitumor drug cis-diamminedichloroplatinum (II) with DNA: formation, identification, and quantitation. Biochemistry. 1985;24:707–13. https://doi.org/10.1021/bi00324a025.
Article
CAS
PubMed
Google Scholar
Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin- DNA adducts. Chem Rev. 1999;99:2467–98. https://doi.org/10.1021/cr980421n.
Article
CAS
PubMed
Google Scholar
Brabec V. DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog Nucleic Acid Res Mol Biol. 2002;71:1–68 https://doi.org/10.1016/S0079-6603(02)71040-4.
Article
CAS
Google Scholar
Scharer OD. DNA interstrand crosslinks: natural and drug-induced DNA adducts that induce unique cellular responses. Chembiochem. 2005;6:27–32. https://doi.org/10.1002/cbic.200400287.
Article
CAS
PubMed
Google Scholar
Noll DM, Mason TM, Miller PS. Formation and repair of Interstrand cross-links in DNA. Chem Rev. 2006;106:277–301. https://doi.org/10.1021/cr040478b.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA. 1988;85:6622–6 https://doi.org/10.1073/pnas.85.18.6622.
Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52. https://doi.org/10.1126/science.279.5349.349.
Article
CAS
PubMed
Google Scholar
Burstyn JN, Heiger-Bernays WJ, Cohen SM, Lippard SJ. Formation of cis-diamminedichloroplatinum(II) 1,2-intrastrand cross-links on DNA is flanking-sequence independent. Nucleic Acids Res. 2000;28:4237–43. https://doi.org/10.1093/nar/28.21.4237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray V, Kandasamy N. The sequence specificity of the anti-tumour drug, cisplatin, in telomeric DNA sequences compared with consecutive guanine DNA sequences. Anti Cancer Agents Med Chem. 2012;12:177–81. https://doi.org/10.2174/187152012800228742.
Article
CAS
Google Scholar
Nguyen HT, Galea AM, Murray V. The interaction of cisplatin with a human telomeric DNA sequence containing seventeen tandem repeats. Bioorg Med Chem Lett. 2013;23:1041–5. https://doi.org/10.1016/j.bmcl.2012.12.021.
Article
CAS
PubMed
Google Scholar
Unryn BM, Hao D, Gluck S, Riabowol KT. Acceleration of telomere loss by chemotherapy is greater in older patients with locally advanced head and neck cancer. Clin Cancer Res. 2006;12:6345–50. https://doi.org/10.1158/1078-0432.CCR-06-0486.
Article
CAS
PubMed
Google Scholar
Sherman SE, Gibson D, Wang AHJ, Lippard SJ. Crystal and molecular structure of cis-[Pt(NH3)2[d(pGpG)]], the principal adduct formed by cis-diamminedichloroplatinum(II) with DNA. J Am Chem Soc. 1988;110:7368–81. https://doi.org/10.1021/ja00230a017.
Article
CAS
Google Scholar
den Hartog JH, Altona C, Chottard JC, Girault JP, Lallemand JY, de Leeuw FA, Marcelis AT, Reedijk J. Conformational analysis of the adduct cis-[Pt(NH3)2 d(GpG)]+ in aqueous solution. A high field (500-300 MHz) nuclear magnetic resonance investigation. Nucleic Acids Res. 1982;10:4715–30 https://doi.org/10.1093/nar/10.15.4715.
Article
Google Scholar
Richards AD, Rodger A. Synthetic metallomolecules as agents for the control of DNA structure. Chem Soc Rev. 2007;36:471–83. https://doi.org/10.1039/b609495c.
Article
CAS
PubMed
Google Scholar
Chaney SG, Sancar A. DNA repair: enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst. 1996;88:1346–60 https://doi.org/10.1093/jnci/88.19.1346.
Article
CAS
Google Scholar
Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier Y. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 2002;62:4899–902 http://cancerres.aacrjournals.org/content/62/17/4899.
CAS
PubMed
Google Scholar
Huang JC, Zamble DB, Reardon JT, Lippard SJ, Sancar A. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci U S A. 1994;91:10394 https://doi.org/10.1073/pnas.91.22.10394.
Article
CAS
Google Scholar
He Q, Liang CH, Lippard SJ. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci U S A. 2000;97:5768–72. https://doi.org/10.1073/pnas.100108697.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boulikas T. Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs. 2009;18:1197–218. https://doi.org/10.1517/13543780903114168.
Article
CAS
PubMed
Google Scholar
Rixe O, Ortuzar W, Alvarez M, Parker R, Reed E, Paull K, Fojo T. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute's anticancer drug screen panel. Biochem Pharmacol. 1996;52:1855–65. https://doi.org/10.1016/S0006-2952(97)81490-6.
Article
CAS
PubMed
Google Scholar
Montagnani F, Turrisi G, Marinozzi C, Aliberti C, Fiorentini G. Effectiveness and safety of oxaliplatin compared to cisplatin for advanced, unresectable gastric cancer: a systematic review and meta-analysis. Gastric Cancer. 2011;14:50–5. https://doi.org/10.1007/s10120-011-0007-7.
Article
CAS
PubMed
Google Scholar
Krause-Heuer AM, Gru nert R, Ku hne S, Buczkowska M, Wheate NJ, Le Pevelen DD, Boag LR, Fisher DM, Kasparkova J, Malina J. Studies of the mechanism of action of platinum (II) complexes with potent cytotoxicity in human cancer cells. J Med Chem. 2009;52:5474–84. https://doi.org/10.1021/jm9007104.
Article
CAS
PubMed
Google Scholar
Ponti M, Forrow SM, Souhami RL, D'Incalci M, Hartley JA. Measurement of the sequence specificity of covalent DNA modification by antineoplastic agents using Taq DNA polymerase. Nucleic Acids Res. 1991;19:2929–33 https://doi.org/10.1093/nar/19.11.2929.
Article
CAS
Google Scholar
Murray V, Motyka H, England PR, Wickham G, Lee HH, Denny WA, McFadyen WD. The use of Taq DNA polymerase to determine the sequence specificity of DNA damage caused by cis-diamminedichloroplatinum(II), acridine-tethered platinum(II) diammine complexes or two analogues. J Biol Chem. 1992;267:18805–9 http://www.jbc.org/content/267/26/18805.abstract.
CAS
PubMed
Google Scholar
Murray V. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents. Prog Nucleic Acid Res Mol Biol. 1999;63:367–415 https://doi.org/10.1016/S0079-6603(08)60727-8.
Article
CAS
Google Scholar
Paul M, Murray V. The sequence selectivity of DNA-targeted 9-aminoacridine cisplatin analogues in a telomere-containing DNA sequence. J Biol Inorg Chem. 2011;16:735–43. https://doi.org/10.1007/s00775-011-0774-y.
Article
CAS
PubMed
Google Scholar
Deforce DL, Millecamps RE, Van Hoofstat D, Van den Eeckhout EG. Comparison of slab gel electrophoresis and capillary electrophoresis for the detection of the fluorescently labeled polymerase chain reaction products of short tandem repeat fragments. J Chromatogr A. 1998;806:149–55 https://doi.org/10.1016/S0021-9673(97)00394-4.
Article
CAS
Google Scholar
Fundador EV, Choudhary D, Schenkman JB, Rusling JF. Accurate DNA fragment sizing by capillary electrophoresis with laser-induced fluorescence Array for detection of sequence specificity of DNA damage. Anal Chem. 2008;80:2212–21. https://doi.org/10.1021/ac702265b.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul M, Murray V. Use of an automated capillary DNA sequencer to investigate the interaction of cisplatin with telomeric DNA sequences. Biomed Chromatogr. 2012;26:350–4. https://doi.org/10.1002/bmc.1664.
Article
CAS
PubMed
Google Scholar
Johnson BW, Murray V, Temple MD. Characterisation of the DNA sequence specificity, cellular toxicity and cross-linking properties of novel bispyridine-based dinuclear platinum complexes. BMC Cancer. 2016;16:333. https://doi.org/10.1186/s12885-016-2368-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pope AJ, Bruce C, Kysela B, Hannon MJ. Issues surrounding standard cytotoxicity testing for assessing activity of non-covalent DNA-binding metallo-drugs. Dalton Trans. 2010;39:2772–4. https://doi.org/10.1039/b927129p.
Article
CAS
PubMed
Google Scholar
Muchova T, Quintal SM, Farrell NP, Brabec V, Kasparkova J. Antitumor bifunctional dinuclear Pt(II) complex BBR3535 forms interduplex DNA cross-links under molecular crowding conditions. J Biol Inorg Chem. 2012;17:239–45. https://doi.org/10.1007/s00775-011-0845-0.
Article
CAS
PubMed
Google Scholar
Keck MV, Lippard SJ. Unwinding of supercoiled DNA by platinum-ethidium and related complexes. J Am Chem Soc. 1992;114:3386–90. https://doi.org/10.1021/ja00035a033.
Article
CAS
Google Scholar
Murray V, Whittaker J, McFadyen WD. DNA sequence selectivity of cisplatin analogues in intact human cells. Chem Biol Interact. 1998;110:27–37 https://doi.org/10.1016/S0009-2797(97)00110-5.
Article
CAS
Google Scholar
Bellon SF, Coleman JH, Lippard SJ. DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II). Biochemistry. 1991;30:8026–35. https://doi.org/10.1021/bi00246a021.
Article
CAS
PubMed
Google Scholar
Wu S, Wang X, Zhu C, Song Y, Wang J, Li Y, Guo Z. Monofunctional platinum complexes containing a 4-nitrobenzo-2-oxa-1,3-diazole fluorophore: distribution in tumour cells. Dalton Trans. 2011;40:10376–82. https://doi.org/10.1039/c1dt10555h.
Article
CAS
PubMed
Google Scholar
Cairns MJ, Carland M, McFadyen WD, Denny WA, Murray V. The DNA sequence selectivity of maltolato-containing cisplatin analogues in purified plasmid DNA and in intact human cells. J Inorg Biochem. 2009;103:1151–5. https://doi.org/10.1016/j.jinorgbio.2009.06.001.
Article
CAS
PubMed
Google Scholar
Murray V, Whittaker J, Temple MD, McFadyen WD. Interaction of 11 cisplatin analogues with DNA: characteristic pattern of damage with monofunctional analogues. Biochim Biophys Acta. 1997;1354:261–71. https://doi.org/10.1016/S0167-4781(97)00087-0.
Article
CAS
PubMed
Google Scholar
Kava HW, Galea AM, Md Jamil F, Feng Y, Murray V. Characterising the atypical 5'-CG DNA sequence specificity of 9-aminoacridine carboxamide Pt complexes. J Biol Inorg Chem. 2014;19:997–1007. https://doi.org/10.1007/s00775-014-1144-3.
Article
CAS
PubMed
Google Scholar
Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res. 2008;14:1291. https://doi.org/10.1158/1078-0432.CCR-07-2238.
Article
CAS
PubMed
Google Scholar
Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehmé A, Christen RD, Howell SB. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 1996;56:4881 http://cancerres.aacrjournals.org/content/56/21/4881.
CAS
PubMed
Google Scholar
Zdraveski ZZ, Mello JA, Farinelli CK, Essigmann JM, Marinus MG. MutS preferentially recognizes cisplatin-over oxaliplatin-modified DNA. J Biol Chem. 2002;277:1255. https://doi.org/10.1074/jbc.M105382200.
Article
CAS
PubMed
Google Scholar
Olivova R, Stepankova J, Muchova T, Novohradsky V, Novakova O, Vrana O, Kasparkova J, Brabec V. Mechanistic insights into toxic effects of a benzotriazolate-bridged dinuclear platinum(II) compound in tumor cells. Inorganica Chim Acta. 2012;393:204–11. https://doi.org/10.1016/j.ica.2012.06.002.
Article
CAS
Google Scholar
Kasparkova J, Suchankova T, Halamikova A, Zerzankova L, Vrana O, Margiotta N, Natile G, Brabec V. Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring PtII chelate complex incorporating the cis-1, 4-diaminocyclohexane carrier ligand. Biochem Pharmacol. 2010;79:552–64. https://doi.org/10.1016/j.bcp.2009.09.019.
Article
CAS
PubMed
Google Scholar
Kasparkova J, Vojtiskova M, Natile G, Brabec V. Unique properties of DNA Interstrand cross-links of antitumor Oxaliplatin and the effect of chirality of the carrier ligand. Chem Eur J. 2008;14:1330–41. https://doi.org/10.1002/chem.200701352.
Article
CAS
PubMed
Google Scholar
Selimović E, Vulović T, Petrović B, Bugarčić Ž, Bogojeski J. Complex formation reactions of two sterically hindered platinum(II) complexes with some N-bonding ligands. Transit Met Chem. 2013;38:635–40. https://doi.org/10.1007/s11243-013-9731-7.
Article
CAS
Google Scholar
Suchankova T, Vojtiskova M, Reedijk J, Brabec V, Kasparkova J. DNA and glutathione interactions in cell-free media of asymmetric platinum(II) complexes cis- and trans-[PtCl2(isopropylamine)(1-methylimidazole)]: relations to their different antitumor effects. J Biol Inorg Chem. 2009;14:75–87. https://doi.org/10.1007/s00775-008-0425-0.
Article
CAS
PubMed
Google Scholar
Hou X-M, Zhang X-H, Wei K-J, Ji C, Dou S-X, Wang W-C, Li M, Wang P-Y. Cisplatin induces loop structures and condensation of single DNA molecules. Nucleic Acids Res. 2009;37:1400–10. https://doi.org/10.1093/nar/gkn933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marques-Gallego P, Gamiz-Gonzalez MA, Fortea-Perez FR, Lutz M, Spek A, Pevec A, Kozlevcar B, Reedijk J. Quinoxaline-2-carboxamide as a carrier ligand in two new platinum(II) compounds: synthesis, crystal structure, cytotoxic activity and DNA interaction. Dalton Trans. 2010;39:5152–8. https://doi.org/10.1039/c001158d.
Article
CAS
PubMed
Google Scholar
Suchankova T, Kubicek K, Kasparkova J, Brabec V, Kozelka J. Platinum-DNA interstrand crosslinks: molecular determinants of bending and unwinding of the double helix. J Inorg Biochem. 2012;108:69–79. https://doi.org/10.1016/j.jinorgbio.2011.09.025.
Article
CAS
PubMed
Google Scholar
Gabano E, Gama S, Mendes F, Gariboldi M, Monti E, Bombard S, Bianco S, Ravera M. Study of the synthesis, antiproliferative properties, and interaction with DNA and polynucleotides of cisplatin-like Pt(II) complexes containing carcinogenic polyaromatic amines. J Biol Inorg Chem. 2013;18:791–801. https://doi.org/10.1007/s00775-013-1022-4.
Article
CAS
PubMed
Google Scholar
Sun Y, Yin R, Gou S, Zhaojian. Antitumor platinum(II) complexes of N-monoalkyl-1R, 2R-diaminocyclohexane derivatives with alkyl groups as hindrance. J Inorg Biochem. 2012;112:68–76. https://doi.org/10.1016/j.jinorgbio.2012.03.003.
Article
CAS
PubMed
Google Scholar
Moretto J, Chauffert B, Ghiringhelli F, Aldrich-Wright JR, Bouyer F. Discrepancy between in vitro and in vivo antitumor effect of a new platinum(II) metallointercalator. Investig New Drugs. 2011;29:1164–76. https://doi.org/10.1007/s10637-010-9461-z.
Article
CAS
Google Scholar
Garbutcheon-Singh KB, Leverett P, Myers S, Aldrich-Wright JR. Cytotoxic platinum(ii) intercalators that incorporate 1R,2R-diaminocyclopentane. Dalton Trans. 2013;42:918–26. https://doi.org/10.1039/C2DT31323E.
Article
CAS
PubMed
Google Scholar