Bouzat JL, McNeil LK, Robertson HM, Solter LF, Nixon JE, Beever JE, Gaskins HR, Olsen G, Subramaniam S, Sogin ML, et al. Phylogenomic analysis of the alpha proteasome gene family from early-diverging eukaryotes. J Mol Evol. 2000;51(6):532–43.
Article
CAS
PubMed
Google Scholar
Park JE, Miller Z, Jun Y, Lee W, Kim KB. Next-generation proteasome inhibitors for cancer therapy. Transl Res. 2018;198:1–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018;19(11):697–712.
Article
CAS
PubMed
Google Scholar
Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and function of the 26S Proteasome. Annu Rev Biochem. 2018;87:697–724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–47.
Article
CAS
PubMed
Google Scholar
Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R. Structure of 20S proteasome from yeast at 2.4 a resolution. Nature. 1997;386(6624):463–71.
Article
CAS
PubMed
Google Scholar
Nunes AT, Annunziata CM. Proteasome inhibitors: structure and function. Semin Oncol. 2017;44(6):377–80.
Article
CAS
PubMed
Google Scholar
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome structure and assembly. J Mol Biol. 2017;429(22):3500–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharon M, Taverner T, Ambroggio XI, Deshaies RJ, Robinson CV. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 2006;4(8): e267.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coux O, Nothwang HG, Silva Pereira I, Recillas Targa F, Bey F, Scherrer K. Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Mol Gen Genet. 1994;245(6):769–80.
Article
CAS
PubMed
Google Scholar
Gomes AV. Genetics of proteasome diseases. Scientifica (Cairo). 2013;2013: 637629.
Google Scholar
Hamazaki J, Hirayama S, Murata S. Redundant roles of Rpn10 and Rpn13 in recognition of Ubiquitinated proteins and cellular homeostasis. PLoS Genet. 2015;11(7): e1005401.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hamazaki J, Sasaki K, Kawahara H, Hisanaga S, Tanaka K, Murata S. Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol. 2007;27(19):6629–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eskandari SK, Seelen MAJ, Lin G, Azzi JR. The immunoproteasome: an old player with a novel and emerging role in alloimmunity. Am J Transplant. 2017;17(12):3033–9.
Article
CAS
PubMed
Google Scholar
Kaur G, Batra S. Emerging role of immunoproteasomes in pathophysiology. Immunol Cell Biol. 2016;94(9):812–20.
Article
CAS
PubMed
Google Scholar
Kimura H, Caturegli P, Takahashi M, Suzuki K. New insights into the function of the immunoproteasome in immune and nonimmune cells. J Immunol Res. 2015;2015: 541984.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science. 2007;316(5829):1349–53.
Article
CAS
PubMed
Google Scholar
Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES. Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med. 2014;71:303–20.
Article
CAS
PubMed
Google Scholar
Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. Autophagic degradation of the 26S Proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell. 2015;58(6):1053–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saez I, Vilchez D. The mechanistic links between proteasome activity aging and age-related diseases. Curr Genomics. 2014;15(1):38–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun. 2014;5:5659.
Article
CAS
PubMed
Google Scholar
Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.
Article
CAS
PubMed
Google Scholar
Munakata K, Uemura M, Tanaka S, Kawai K, Kitahara T, Miyo M, Kano Y, Nishikawa S, Fukusumi T, Takahashi Y, et al. Cancer stem-like properties in colorectal cancer cells with low proteasome activity. Clin Cancer Res. 2016;22(21):5277–86.
Article
CAS
PubMed
Google Scholar
Muramatsu S, Tanaka S, Mogushi K, Adikrisna R, Aihara A, Ban D, Ochiai T, Irie T, Kudo A, Nakamura N, et al. Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor-host interaction and clinical course. Hepatology. 2013;58(1):218–28.
Article
CAS
PubMed
Google Scholar
Myeku N, Duff KE. Targeting the 26S proteasome to protect against Proteotoxic diseases. Trends Mol Med. 2018;24(1):18–29.
Article
CAS
PubMed
Google Scholar
Dawson S, Higashitsuji H, Wilkinson AJ, Fujita J, Mayer RJ. Gankyrin: a new oncoprotein and regulator of pRb and p53. Trends Cell Biol. 2006;16(5):229–33.
Article
CAS
PubMed
Google Scholar
Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo Y, Masuda T, Dawson S, Shimada Y, Mayer RJ, et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell. 2005;8(1):75–87.
Article
CAS
PubMed
Google Scholar
Hopper LJ, Begum N, Smith L, Hughes AT. The role of PSMD9 in human disease: future clinical and therapeutic implications. AIMS Molecular Science. 2015;2(4):476–84.
Article
CAS
Google Scholar
Langlands FE, Dodwell D, Hanby AM, Horgan K, Millican-Slater RA, Speirs V, Verghese ET, Smith L, Hughes TA. PSMD9 expression predicts radiotherapy response in breast cancer. Mol Cancer. 2014;13:73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barrio S, Stühmer T, Da-Viá M, Barrio-Garcia C, Lehners N, Besse A, Cuenca I, Garitano-Trojaola A, Fink S, Leich E, et al. Spectrum and functional validation of PSMB5 mutations in multiple myeloma. Leukemia. 2019;33(2):447–56.
Article
CAS
PubMed
Google Scholar
Tsvetkov P P, Mendillo ML, Zhao J, Carette JE, Merrill PH, Cikes D, Varadarajan M, van Diemen FR, Penninger JM, Goldberg AL, et al. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. Elife. 2015;4:e08467.
Article
PubMed Central
Google Scholar
Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14(7):417–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapeta S, Chondrogianni N, Gonos ES. Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J Biol Chem. 2010;285(11):8171–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol. 2003;23(23):8786–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem. 2003;278(10):8135–45.
Article
CAS
PubMed
Google Scholar
Lenos KJ, Vermeulen L. Cancer stem cells don’t waste their time cleaning-low proteasome activity, a marker for cancer stem cell function. Ann Transl Med. 2016;4(24):519.
Article
PubMed
PubMed Central
Google Scholar
Sha Z, Goldberg AL. Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol. 2014;24(14):1573–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weyburne ES, Wilkins OM, Sha Z, Williams DA, Pletnev AA, de Bruin G, Overkleeft HS, Goldberg AL, Cole MD, Kisselev AF. Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation. Cell Chem Biol. 2017;24(2):218–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xin BT, Huber EM, de Bruin G, Heinemeyer W, Maurits E, Espinal C, Du Y, Janssens M, Weyburne ES, Kisselev AF, et al. Structure-based design of inhibitors selective for human proteasome β2c or β2i subunits. J Med Chem. 2019;62(3):1626–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parris TZ. Pan-cancer analyses of human nuclear receptors reveal transcriptome diversity and prognostic value across cancer types. Sci Rep. 2020;10(1):1873.
Article
CAS
PubMed
PubMed Central
Google Scholar
cBioPortal interactive web-based tool [https://www.cbioportal.org/].
Broad Institute Firehose [https://gdac.broadinstitute.org/].
Dietlein F, Weghorn D, Taylor-Weiner A, Richters A, Reardon B, Liu D, Lander ES, Van Allen EM, Sunyaev SR. Identification of cancer driver genes based on nucleotide context. Nat Genet. 2020;52(2):208–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census of human cancer genes. Nat Rev Cancer. 2004;4(3):177–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
UCSC Xena [https://xenabrowser.net/datapages/].
Genomic Data Commons [https://gdc.cancer.gov/about-data/publications/PanCan-Clinical-2018].
Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, Möllerström E, Karlsson P, Helou K. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res. 2010;16(15):3860.
Article
CAS
PubMed
Google Scholar
Parris TZ, Rönnerman EW, Engqvist H, Biermann J, Truvé K, Nemes S, Forssell-Aronsson E, Solinas G, Kovács A, Karlsson P, et al. Genome-wide multi-omics profiling of the 8p11-p12 amplicon in breast carcinoma. Oncotarget. 2018;9(35):24140–54.
Article
PubMed
PubMed Central
Google Scholar
KM plotter interactive tool [https://kmplot.com/analysis/].
Menyhart O, Weltz B, Gyorffy B. A tool for life science researchers for multiple hypothesis testing correction. PLoS One. 2021;16(6):Kwak.
Article
CAS
Google Scholar
Kolde R. R package “pheatmap”: Pretty Heatmaps. 2019.
Google Scholar
Kassambara A. R package “ggpubr”: ‘ggplot2’ based publication ready plots. 2019.
Google Scholar
Kassambara A. R package “rstatix”: pipe-friendly framework for basic statistical tests. 2019.
Google Scholar
Wei T, Simko V. R package “corrplot”: visualization of a correlation matrix. 2017.
Google Scholar
Gordon M, Lumley T. R package “forestplot”: advanced forest plot using ‘grid’ graphics. 2019.
Google Scholar
Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev. 2017;36(4):717–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Madura K. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res. 2005;65(13):5599–606.
Article
CAS
PubMed
Google Scholar
Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS. A census of amplified and overexpressed human cancer genes. Nat Rev Cancer. 2010;10(1):59–64.
Article
CAS
PubMed
Google Scholar
Krijgsman O, Carvalho B, Meijer GA, Steenbergen RDM, Ylstra B. Focal chromosomal copy number aberrations in cancer—needles in a genome haystack. Biochimica et Biophysica Acta (BBA). Mole Cell Res. 2014;1843(11):26980–274.
Google Scholar
Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22(8):447–55.
Article
CAS
PubMed
Google Scholar
Nowee ME, Snijders AM, Rockx DA, de Wit RM, Kosma VM, Hämäläinen K, Schouten JP, Verheijen RH, van Diest PJ, Albertson DG, et al. DNA profiling of primary serous ovarian and fallopian tube carcinomas with array comparative genomic hybridization and multiplex ligation-dependent probe amplification. J Pathol. 2007;213(1):46–55.
Article
CAS
PubMed
Google Scholar
Fejzo MS, Anderson L, Chen HW, Guandique E, Kalous O, Conklin D, Slamon DJ. Proteasome ubiquitin receptor PSMD4 is an amplification target in breast cancer and may predict sensitivity to PARPi. Genes Chromosomes Cancer. 2017;56(8):589–97.
Article
CAS
PubMed
Google Scholar
Dressman MA, Baras A, Malinowski R, Alvis LB, Kwon I, Walz TM, Polymeropoulos MH. Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. Cancer Res. 2003;63(9):2194–9.
CAS
PubMed
Google Scholar
Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell. 2010;38(1):17–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song W, Guo C, Chen J, Duan S, Hu Y, Zou Y, Chi H, Geng J, Zhou J. Silencing PSME3 induces colorectal cancer radiosensitivity by downregulating the expression of cyclin B1 and CKD1. Exp Biol Med (Maywood). 2019;244(16):1409–18.
Article
CAS
Google Scholar
Stadtmueller BM, Hill CP. Proteasome activators. Mol Cell. 2011;41(1):8–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murata S, Yashiroda H, Tanaka K. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol. 2009;10(2):104–15.
Article
CAS
PubMed
Google Scholar
Ben-Nissan G, Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules. 2014;4(3):862–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Besche HC, Haas W, Gygi SP, Goldberg AL. Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry. 2009;48(11):2538–49.
Article
CAS
PubMed
Google Scholar
Fabre B, Lambour T, Garrigues L, Ducoux-Petit M, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines. J Proteome Res. 2014;13(6):3027–37.
Article
CAS
PubMed
Google Scholar
Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci. 2012;109:75–112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morozov AV, Karpov VL. Biological consequences of structural and functional proteasome diversity. Heliyon. 2018;4(10):e00894–e00894.
Article
PubMed
PubMed Central
Google Scholar
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78:477–513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morozov AV, Karpov VL. Proteasomes and several aspects of their heterogeneity relevant to cancer. Front Oncol. 2019;9:761–761.
Article
PubMed
PubMed Central
Google Scholar
Rouette A, Trofimov A, Haberl D, Boucher G, Lavallée V-P, D’Angelo G, Hébert J, Sauvageau G, Lemieux S, Perreault C. Expression of immunoproteasome genes is regulated by cell-intrinsic and –extrinsic factors in human cancers. Sci Rep. 2016;6(1):34019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Huang J, Sun J, Xiang S, Yang D, Ying X, Lu M, Li H, Ren G. The transcription levels and prognostic values of seven proteasome alpha subunits in human cancers. Oncotarget. 2017;8(3):4501–19.
Article
PubMed
Google Scholar
Wang H, He Z, Xia L, Zhang W, Xu L, Yue X, Ru X, Xu Y. PSMB4 overexpression enhances the cell growth and viability of breast cancer cells leading to a poor prognosis. Oncol Rep. 2018;40(4):2343–52.
CAS
PubMed
Google Scholar
Li Y, Huang J, Zeng B, Yang D, Sun J, Yin X, Lu M, Qiu Z, Peng W, Xiang T, et al. PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation. Cancer Lett. 2018;430:109–22.
Article
CAS
PubMed
Google Scholar
Kalaora S, Lee JS, Barnea E, Levy R, Greenberg P, Alon M, Yagel G, Bar Eli G, Oren R, Peri A, et al. Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat Commun. 2020;11(1):896.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang CY, Li CY, Hsu HP, Cho CY, Yen MC, Weng TY, Chen WC, Hung YH, Lee KT, Hung JH, et al. PSMB5 plays a dual role in cancer development and immunosuppression. Am J Cancer Res. 2017;7(11):2103–20.
PubMed
PubMed Central
Google Scholar