Thway K. Well-differentiated liposarcoma and dedifferentiated liposarcoma: an updated review. Semin Diagn Pathol. 2019;36(2):112–21.
Article
PubMed
Google Scholar
Nassif NA, Tseng W, Borges C, Chen P, Eisenberg B. Recent advances in the management of liposarcoma. F1000Res. 2016;5:2907.
Article
PubMed
PubMed Central
Google Scholar
Peng T, Zhang P, Liu J, Nguyen T, Bolshakov S, Belousov R, et al. An experimental model for the study of well-differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors. Lab Investig. 2011;91(3):392–403.
Article
CAS
PubMed
Google Scholar
Zhang Q, Zhang P, Li B, Dang H, Jiang J, Meng L, et al. The expression of Perilipin family proteins can be used as diagnostic markers of Liposarcoma and to differentiate subtypes. J Cancer. 2020;11(14):4081–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci U S A. 1997;94(1):237–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci U S A. 1999;96(7):3951–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Debrock G, Vanhentenrijk V, Sciot R, Debiec-Rychter M, Oyen R, Van Oosterom A. A phase II trial with rosiglitazone in liposarcoma patients. Br J Cancer. 2003;89(8):1409–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YJ, Yu DB, Kim M, Choi YL. Adipogenesis induces growth inhibition of dedifferentiated liposarcoma. Cancer Sci. 2019;110(8):2676–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 2002;16(1):22–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agostini M, Schoenmakers E, Mitchell C, Szatmari I, Savage D, Smith A, et al. Non-DNA binding, dominant-negative, human PPARgamma mutations cause lipodystrophic insulin resistance. Cell Metab. 2006;4(4):303–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majithia AR, Flannick J, Shahinian P, Guo M, Bray MA, Fontanillas P, et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci U S A. 2014;111(36):13127–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Mullican SE, DiSpirito JR, Peed LC, Lazar MA. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARgamma. Proc Natl Acad Sci U S A. 2013;110(46):18656–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.
Article
CAS
PubMed
Google Scholar
Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, et al. Transcriptional control of preadipocyte determination by Zfp423. Nature. 2010;464(7288):619–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, Cohen P, et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 2012;15(2):230–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jimenez MA, Akerblad P, Sigvardsson M, Rosen ED. Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol Cell Biol. 2007;27(2):743–57.
Article
CAS
PubMed
Google Scholar
Kang S, Akerblad P, Kiviranta R, Gupta RK, Kajimura S, Griffin MJ, et al. Regulation of early adipose commitment by Zfp521. PLoS Biol. 2012;10(11):e1001433.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiviranta R, Yamana K, Saito H, Ho DK, Laine J, Tarkkonen K, et al. Coordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages. J Exp Med. 2013;210(5):969–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Addison WN, Fu MM, Yang HX, Lin Z, Nagano K, Gori F, et al. Direct transcriptional repression of Zfp423 by Zfp521 mediates a bone Morphogenic protein-dependent osteoblast versus adipocyte lineage commitment switch. Mol Cell Biol. 2014;34(16):3076–85.
Article
PubMed
PubMed Central
Google Scholar
Qi J, Nakayama K, Gaitonde S, Goydos JS, Krajewski S, Eroshkin A, et al. The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc Natl Acad Sci U S A. 2008;105(43):16713–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan P, Möller A, Liu MCP, Sceneay JE, Wong CSF, Waddell N, et al. The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression. Breast Cancer Res. 2011;13(1):R19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi J, Tripathi M, Mishra R, Sahgal N, Fazli L, Ettinger S, et al. The E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity. Cancer Cell. 2013;23(3):332–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakayama K, Qi J, Ronai Z. The ubiquitin ligase Siah2 and the hypoxia response. Mol Cancer Res. 2009;7(4):443–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dang TN, Taylor JL, Kilroy G, Yu Y, Burk DH, Floyd ZE. SIAH2 is expressed in adipocyte precursor cells and interacts with EBF1 and ZFP521 to promote Adipogenesis. Obesity (Silver Spring). 2021;29(1):98–107.
Article
CAS
Google Scholar
Kilroy G, Carter LE, Newman S, Burk DH, Manuel J, Moller A, et al. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation. Obesity. 2015;23(11):2223–32.
Article
CAS
PubMed
Google Scholar
Kilroy G, Kirk-Ballard H, Carter LE, Floyd ZE. The ubiquitin ligase Siah2 regulates PPARgamma activity in adipocytes. Endocrinology. 2012;153(3):1206–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kilroy G, Burk DH, Floyd ZE. Siah2 protein mediates early events in commitment to an Adipogenic pathway. J Biol Chem. 2016;291(53):27289–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Floyd ZE, Stephens JM. STAT5A promotes adipogenesis in nonprecursor cells and associates with the glucocorticoid receptor during adipocyte differentiation. Diabetes. 2003;52(2):308–14.
Article
CAS
PubMed
Google Scholar
Aggerholm-Pedersen N, Safwat A, Bærentzen S, Nordsmark M, Nielsen OS, Alsner J, et al. The importance of reference gene analysis of formalin-fixed, paraffin-embedded samples from sarcoma patients - an often underestimated problem. Transl Oncol. 2014;7(6):687–93.
Article
PubMed
PubMed Central
Google Scholar
Künstlinger H, Fassunke J, Schildhaus H-U, Brors B, Heydt C, Ihle MA, et al. FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro. Oncotarget. 2015;6(24):20215–30.
Article
PubMed
PubMed Central
Google Scholar
Debels H, Galea L, Han XL, Palmer J, van Rooijen N, Morrison W, et al. Macrophages play a key role in angiogenesis and adipogenesis in a mouse tissue engineering model. Tissue Eng Part A. 2013;19(23–24):2615–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 2013;18(3):355–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho KW, Zamarron BF, Muir LA, Singer K, Porsche CE, DelProposto JB, et al. Adipose tissue dendritic cells are independent contributors to obesity-induced inflammation and insulin resistance. J Immunol. 2016;197(9):3650–61.
Article
CAS
PubMed
Google Scholar
Straub BK, Witzel HR, Pawella LM, Renner M, Eiteneuer E, Hashani M, et al. Perilipin 1 expression differentiates Liposarcoma from other types of soft tissue sarcoma. Am J Pathol. 2019;189(8):1547–58.
Article
CAS
PubMed
Google Scholar
Compton ML, Al-Rohil RN. The Utility of Perilipin in Liposarcomas: PLIN1 Differentiates Round Cell Liposarcoma From Other Round Cell Sarcomas. Appl Immunohistochem Mol Morphol. 2021;29(2):152-157.
Stratford EW, Castro R, Daffinrud J, Skarn M, Lauvrak S, Munthe E, et al. Characterization of liposarcoma cell lines for preclinical and biological studies. Sarcoma. 2012;2012:148614.
Article
PubMed
PubMed Central
Google Scholar
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.
Article
PubMed
Google Scholar
Dalal KM, Kattan MW, Antonescu CR, Brennan MF, Singer S. Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, or trunk. Ann Surg. 2006;244(3):381–91.
Article
PubMed
PubMed Central
Google Scholar
Gahvari Z, Parkes A. Dedifferentiated Liposarcoma: systemic therapy options. Curr Treat Options in Oncol. 2020;21(2):15.
Article
Google Scholar
Assi T, Kattan J, Rassy E, Nassereddine H, Farhat F, Honore C, et al. Targeting CDK4 (cyclin-dependent kinase) amplification in liposarcoma: a comprehensive review. Crit Rev Oncol Hematol. 2020;153:103029.
Article
PubMed
Google Scholar
Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol. 2018;28(11):911–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abella A, Dubus P, Malumbres M, Rane SG, Kiyokawa H, Sicard A, et al. Cdk4 promotes adipogenesis through PPARgamma activation. Cell Metab. 2005;2(4):239–49.
Article
CAS
PubMed
Google Scholar
Hallenborg P, Siersbaek M, Barrio-Hernandez I, Nielsen R, Kristiansen K, Mandrup S, et al. MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3. Cell Death Dis. 2016;7(6):e2289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matushansky I, Hernando E, Socci ND, Matos T, Mills J, Edgar MA, et al. A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol. 2008;172(4):1069–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamm JK, Park BH, Farmer SR. A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem. 2001;276(21):18464–71.
Article
CAS
PubMed
Google Scholar
Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol. 1996;16(8):4128–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hudak CS, Gulyaeva O, Wang Y, Park S-M, Lee L, Kang C, et al. Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep. 2014;8(3):678–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165(3):535–50.
Article
CAS
PubMed
Google Scholar
Dancsok AR, Gao D, Lee AF, Steigen SE, Blay J-Y, Thomas DM, et al. Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas. Oncoimmunology. 2020;9(1):1747340.
Article
PubMed
PubMed Central
Google Scholar
Hagi T, Nakamura T, Iino T, Matsubara T, Asanuma K, Matsumine A, et al. The diagnostic and prognostic value of interleukin-6 in patients with soft tissue sarcomas. Sci Rep. 2017;7(1):9640.
Article
PubMed
PubMed Central
Google Scholar
Huang JH, Lee FS, Pasha TL, Sammel MD, Karakousis G, Xu G, et al. Analysis of HIF-1a and its regulator, PHD2, in retroperitoneal sarcomas: clinico-pathologic implications. Cancer Biol Ther. 2010;9(4):303–11.
Article
PubMed
Google Scholar
Kim JI, Choi KU, Lee IS, Choi YJ, Kim WT, Shin DH, et al. Expression of hypoxic markers and their prognostic significance in soft tissue sarcoma. Oncol Lett. 2015;9(4):1699–706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong SK, Kim JS, Lee CG, Park Y-S, Kim SD, Yoon SO, et al. Tumor associated macrophages provide the survival resistance of tumor cells to hypoxic microenvironmental condition through IL-6 receptor-mediated signals. Immunobiology. 2017;222(1):55–65.
Article
CAS
PubMed
Google Scholar
Henze AT, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 2016;126(10):3672–9.
Article
PubMed
PubMed Central
Google Scholar
Wong CSF, Möller A. Siah: a promising anticancer target. Cancer Res. 2013;73(8):2400.
Article
CAS
PubMed
Google Scholar
Scortegagna M, Hockemeyer K, Dolgalev I, Poźniak J, Rambow F, Li Y, et al. Siah2 control of T-regulatory cells limits anti-tumor immunity. Nat Commun. 2020;11(1):99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adam MG, Matt S, Christian S, Hess-Stumpp H, Haegebarth A, Hofmann TG, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14(23):3734–47.
Article
CAS
PubMed
PubMed Central
Google Scholar