Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32(2):204–20 e15. PubMed PMID: 28810145
Article
PubMed
CAS
PubMed Central
Google Scholar
Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118(9):1881–5. PubMed PMID: 21704381
Article
PubMed
Google Scholar
Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol. 2017;11:279–89. PubMed PMID: 28203054. Pubmed Central PMCID: 5298817
Article
PubMed
PubMed Central
CAS
Google Scholar
Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res. 2017; PubMed PMID: 28843435.
Royer-Bertrand B, Torsello M, Rimoldi D, El Zaoui I, Cisarova K, Pescini-Gobert R, et al. Comprehensive genetic landscape of uveal melanoma by whole-genome sequencing. Am J Hum Genet. 2016;99(5):1190–8. PubMed PMID: 27745836. Pubmed Central PMCID: 5097942
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. PubMed PMID: 23550210. Pubmed Central PMCID: 4160307
Article
PubMed
PubMed Central
CAS
Google Scholar
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. PubMed PMID: 22588877. Pubmed Central PMCID: 3956037
Article
PubMed
Google Scholar
cBioPortal. 2013. Available from: http://www.cbioportal.org/index.do.
Genome Data Commons. 2018. Available from: https://portal.gdc.cancer.gov/.
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013 Mar;14(2):178–92. PubMed PMID: 22517427. Pubmed Central PMCID: 3603213
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. PubMed PMID: 21221095. Pubmed Central PMCID: 3346182
Article
PubMed
PubMed Central
CAS
Google Scholar
The Comprehensive R Archive network. 2018. Available from: https://cran.cnr.berkeley.edu/.
Google Scholar
Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, Omberg L, Wolf DM, Shriver CD, Thorsson V, Cancer Genome Atlas Research, Network, Hu H. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell.2018;173(2):400–16. PMCID: 6066282.
Broad Institute. Firehose 2016. Available from: http://gdac.broadinstitute.org/.
Coverley D, Marr J, Ainscough J. Ciz1 promotes mammalian DNA replication. J Cell Sci. 2005;118(Pt 1):101–12. PubMed PMID: 15585571
Article
PubMed
CAS
Google Scholar
Ainscough JF, Rahman FA, Sercombe H, Sedo A, Gerlach B, Coverley D. C-terminal domains deliver the DNA replication factor Ciz1 to the nuclear matrix. J Cell Sci. 2007;120(Pt 1):115–24. PubMed PMID: 17182902
PubMed
CAS
Google Scholar
Copeland NA, Sercombe HE, Ainscough JF, Coverley D. Ciz1 cooperates with cyclin-A-CDK2 to activate mammalian DNA replication in vitro. J Cell Sci. 2010;123(Pt 7):1108–15. PubMed PMID: 20215406. Pubmed Central PMCID: 2844319
Article
PubMed
PubMed Central
CAS
Google Scholar
Munkley J, Copeland NA, Moignard V, Knight JR, Greaves E, Ramsbottom SA, et al. Cyclin E is recruited to the nuclear matrix during differentiation, but is not recruited in cancer cells. Nucleic Acids Res. 2011;39(7):2671–7. PubMed PMID: 21109536. Pubmed Central PMCID: 3074132
Article
PubMed
CAS
Google Scholar
Greaves EA, Copeland NA, Coverley D, Ainscough JF. Cancer-associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells. J Cell Sci. 2012;125(Pt 10):2466–77. PubMed PMID: 22366453
Article
PubMed
CAS
Google Scholar
Pauzaite T, Thacker U, Tollitt J, Copeland NA. Emerging roles for Ciz1 in cell cycle regulation and as a driver of tumorigenesis. Biomol Ther. 2016;27:7(1). PubMed PMID: 28036012. Pubmed Central PMCID: 5372713
Google Scholar
Rahman F, Ainscough JF, Copeland N, Coverley D. Cancer-associated missplicing of exon 4 influences the subnuclear distribution of the DNA replication factor CIZ1. Hum Mutat. 2007;28(10):993–1004. PubMed PMID: 17508423
Article
PubMed
CAS
Google Scholar
Higgins G, Roper KM, Watson IJ, Blackhall FH, Rom WN, Pass HI, et al. Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc Natl Acad Sci U S A. 2012;109(45):E3128–35. PubMed PMID: 23074256. Pubmed Central PMCID: 3494940
Article
PubMed
PubMed Central
Google Scholar
Dobbelstein M, Sorensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov. 2015;14(6):405–23. PubMed PMID: 25953507
Article
PubMed
CAS
Google Scholar
Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283(2):232–45. PubMed PMID: 26507796
Article
PubMed
CAS
Google Scholar
Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev. 2017;31(11):1073–88. PubMed PMID: 28717046
Article
PubMed
PubMed Central
CAS
Google Scholar
Pruitt SC, Bailey KJ, Freeland A. Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells. 2007;25(12):3121–32. PubMed PMID: 17717065
Article
PubMed
CAS
Google Scholar
Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, et al. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet. 2007;39(1):93–8. PubMed PMID: 17143284
Article
PubMed
CAS
Google Scholar
Kunnev D, Rusiniak ME, Kudla A, Freeland A, Cady GK, Pruitt SC. DNA damage response and tumorigenesis in Mcm2-deficient mice. Oncogene. 2010;29(25):3630–8. PubMed PMID: 20440269. Pubmed Central PMCID: 2892019
Article
PubMed
PubMed Central
CAS
Google Scholar
Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41(5):543–53. PubMed PMID: 21362550. Pubmed Central PMCID: 3062258
Article
PubMed
PubMed Central
CAS
Google Scholar
Rusiniak ME, Kunnev D, Freeland A, Cady GK, Pruitt SC. Mcm2 deficiency results in short deletions allowing high resolution identification of genes contributing to lymphoblastic lymphoma. Oncogene. 2012;31(36):4034–44. PubMed PMID: 22158038. Pubmed Central PMCID: 3309111
Article
PubMed
CAS
Google Scholar
Kunnev D, Freeland A, Qin M, Leach RW, Wang J, Shenoy RM, et al. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins. Genome Res. 2015;25(4):558–69. PubMed PMID: 25762552. Pubmed Central PMCID: 4381527
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A, Gonzalez-Aguilera C, et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol. 2015;22(8):618–26. PubMed PMID: 26167883. Pubmed Central PMCID: 4685956
Article
PubMed
PubMed Central
CAS
Google Scholar
Ishimi Y, Komamura-Kohno Y, Arai K, Masai H. Biochemical activities associated with mouse Mcm2 protein. J Biol Chem. 2001;276(46):42744–52. PubMed PMID: 11568184
Article
PubMed
CAS
Google Scholar
Di Paola D, Zannis-Hadjopoulos M. Comparative analysis of pre-replication complex proteins in transformed and normal cells. J Cell Biochem. 2012;113(4):1333–47. PubMed PMID: 22134836
Article
PubMed
CAS
Google Scholar
Kikuchi J, Kinoshita I, Shimizu Y, Kikuchi E, Takeda K, Aburatani H, et al. Minichromosome maintenance (MCM) protein 4 as a marker for proliferation and its clinical and clinicopathological significance in non-small cell lung cancer. Lung Cancer. 2011;72(2):229–37. PubMed PMID: 20884074
Article
PubMed
Google Scholar
Sheu YJ, Kinney JB, Lengronne A, Pasero P, Stillman B. Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proc Natl Acad Sci U S A. 2014;111(18):E1899–908. PubMed PMID: 24740181. Pubmed Central PMCID: 4020090
Article
PubMed
PubMed Central
CAS
Google Scholar
Lipkin SM, Wang V, Jacoby R, Banerjee-Basu S, Baxevanis AD, Lynch HT, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet. 2000;24(1):27–35. PubMed PMID: 10615123
Article
PubMed
CAS
Google Scholar
Choe KN, Moldovan GL. Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol Cell. 2017;65(3):380–92. PubMed PMID: 28157503. Pubmed Central PMCID: 5302417
Article
PubMed
PubMed Central
CAS
Google Scholar
De Biasio A, Blanco FJ. Proliferating cell nuclear antigen structure and interactions: too many partners for one dancer? Adv Protein Chem Struct Biol. 2013;91:1–36. PubMed PMID: 23790209
Article
PubMed
CAS
Google Scholar
Boehm EM, Washington MT. R.I.P. to the PIP: PCNA-binding motif no longer considered specific: PIP motifs and other related sequences are not distinct entities and can bind multiple proteins involved in genome maintenance. BioEssays. 2016;38(11):1117–22. PubMed PMID: 27539869. Pubmed Central PMCID: 5341575
Article
PubMed
PubMed Central
CAS
Google Scholar
Stoimenov I, Helleday T. PCNA on the crossroad of cancer. Biochem Soc Trans. 2009;37(Pt 3):605–13. PubMed PMID: 19442257
Article
PubMed
CAS
Google Scholar
Wang SC. PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol Sci. 2014;35(4):178–86. PubMed PMID: 24655521
Article
PubMed
CAS
Google Scholar
Smith SJ, Gu L, Phipps EA, Dobrolecki LE, Mabrey KS, Gulley P, et al. A peptide mimicking a region in proliferating cell nuclear antigen specific to key protein interactions is cytotoxic to breast cancer. Mol Pharmacol. 2015;87(2):263–76. PubMed PMID: 25480843. Pubmed Central PMCID: 4293449
Article
PubMed
PubMed Central
CAS
Google Scholar
Gu L, Smith S, Li C, Hickey RJ, Stark JM, Fields GB, et al. A PCNA-derived cell permeable peptide selectively inhibits neuroblastoma cell growth. PLoS One. 2014;9(4):e94773. PubMed PMID: 24728180. Pubmed Central PMCID: 3984256
Article
PubMed
PubMed Central
CAS
Google Scholar
Stillman B, Reconsidering DNA. Polymerases at the replication fork in eukaryotes. Mol Cell. 2015;59(2):139–41. PubMed PMID: 26186286. Pubmed Central PMCID: 4636199
Article
PubMed
PubMed Central
CAS
Google Scholar
Rundle S, Bradbury A, Drew Y, Curtin NJ. Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers (Basel). 2017;9(5):41. PubMed PMID: 2844862. Pubmed Central PMCID: 5447951.
Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300(5625):1542–8. PubMed PMID: 12791985
Article
PubMed
CAS
Google Scholar
O'Connell BC, Adamson B, Lydeard JR, Sowa ME, Ciccia A, Bredemeyer AL, et al. A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. Mol Cell. 2010;40(4):645–57. PubMed PMID: 21055985. Pubmed Central PMCID: 3006237
Article
PubMed
PubMed Central
CAS
Google Scholar
Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science. 2001;294(5547):1713–6. PubMed PMID: 11721054
Article
PubMed
CAS
Google Scholar
Cortez D, Glick G, Elledge SJ. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci U S A. 2004;101(27):10078–83. PubMed PMID: 15210935. Pubmed Central PMCID: 454167
Article
PubMed
PubMed Central
CAS
Google Scholar
Burrows AE, Elledge SJ. How ATR turns on: TopBP1 goes on ATRIP with ATR. Genes Dev. 2008;22(11):1416–21. PubMed PMID: 18519633. Pubmed Central PMCID: 2732414
Article
PubMed
PubMed Central
CAS
Google Scholar
Ismail IH, Davidson R, Gagne JP, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 2014;74(16):4282–94. PubMed PMID: 24894717
Article
PubMed
CAS
Google Scholar
Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A. 2014;111(1):285–90. PubMed PMID: 24347639. Pubmed Central PMCID: 3890818
Article
PubMed
CAS
Google Scholar
KEGG Pathway Database. 2018. Available from: https://www.genome.jp/kegg/pathway.html.
Elledge S. 2018. Available from: http://elledgelab.med.harvard.edu/?page_id=264).