Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.
Article
CAS
PubMed
Google Scholar
Kato M, Slack FJ. MicroRNAs: small molecules with big roles - C. elegans to human cancer. Biology of the cell / under the auspices of the European Cell Biology Organization. 2008;100(2):71–81.
Article
CAS
Google Scholar
Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10(9):542–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oishi N, Kumar MR, Roessler S, Ji J, Forgues M, Budhu A, et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology. 2012;56(5):1792–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012;61(2):278–89.
Article
CAS
PubMed
Google Scholar
Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene. 2013;33(31):4069–76.
Article
PubMed
Google Scholar
Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124(4):1853–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colangelo T, Fucci A, Votino C, Sabatino L, Pancione M, Laudanna C, et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia. 2013;15(9):1086–99.
Article
PubMed
PubMed Central
Google Scholar
Papadimitriou E, Vasilaki E, Vorvis C, Iliopoulos D, Moustakas A, Kardassis D, et al. Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: role in epithelial-to-mesenchymal transition. Oncogene. 2012;31(23):2862–75.
Article
CAS
PubMed
Google Scholar
Wang SC, Lin XL, Li J, Zhang TT, Wang HY, Shi JW, et al. MicroRNA-122 Triggers Mesenchymal-Epithelial Transition and Suppresses Hepatocellular Carcinoma Cell Motility and Invasion by Targeting RhoA. PLoS One. 2014;9(7):e101330.
Article
PubMed
PubMed Central
Google Scholar
Xia H, Ooi LL, Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013;58(2):629–41.
Article
CAS
PubMed
Google Scholar
Zhang Q, He XJ, Ma LP, Li N, Yang J, Cheng YX, et al. Expression and significance of microRNAs in the p53 pathway in ovarian cancer cells and serous ovarian cancer tissues. Zhonghua zhong liu za zhi [Chinese journal of oncology]. 2011;33(12):885–90.
CAS
Google Scholar
Ye W, Xue J, Zhang Q, Li F, Zhang W, Chen H, et al. MiR-449a functions as a tumor suppressor in endometrial cancer by targeting CDC25A. Oncol Rep. 2014;32(3):1193–9.
CAS
PubMed
Google Scholar
Ostling P, Leivonen SK, Aakula A, Kohonen P, Makela R, Hagman Z, et al. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res. 2011;71(5):1956–67.
Article
PubMed
Google Scholar
Chen H, Lin YW, Mao YQ, Wu J, Liu YF, Zheng XY, et al. MicroRNA-449a acts as a tumor suppressor in human bladder cancer through the regulation of pocket proteins. Cancer Lett. 2012;320(1):40–7.
Article
CAS
PubMed
Google Scholar
Martin A, Jones A, Bryar PJ, Mets M, Weinstein J, Zhang G, et al. MicroRNAs-449a and -449b exhibit tumor suppressive effects in retinoblastoma. Biochem Biophys Res Commun. 2013;440(4):599–603.
Article
CAS
PubMed
Google Scholar
Wei B, Song Y, Zhang Y, Hu M. MicroRNA-449a functions as a tumor-suppressor in gastric adenocarcinoma by targeting Bcl-2. Oncology letters. 2013;6(6):1713–8.
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Dai Y, Zhang X, Jin D, Li X, Zhang Y. Increased miR-449a expression in colorectal carcinoma tissues is inversely correlated with serum carcinoembryonic antigen. Oncology letters. 2014;7(2):568–72.
PubMed
Google Scholar
Luo W, Huang B, Li Z, Li H, Sun L, Zhang Q, et al. MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met. PLoS One. 2013;8(5):e64759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Fang Y, Cao Y, Qin R, Chen Q. MiR-449a Regulates proliferation and chemosensitivity to cisplatin by targeting cyclin D1 and BCL2 in SGC7901 cells. Dig Dis Sci. 2014;59(2):336–45.
Article
CAS
PubMed
Google Scholar
Liu YJ, Lin YF, Chen YF, Luo EC, Sher YP, Tsai MH, et al. MicroRNA-449a enhances radiosensitivity in CL1-0 lung adenocarcinoma cells. PLoS One. 2013;8(4):e62383.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, et al. MiR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28(14):1714–24.
Article
CAS
PubMed
Google Scholar
Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, et al. MiR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev. 2009;23(20):2388–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren XS, Yin MH, Zhang X, Wang Z, Feng SP, Wang GX, et al. Tumor-suppressive microRNA-449a induces growth arrest and senescence by targeting E2F3 in human lung cancer cells. Cancer Lett. 2014;344(2):195–203.
Article
CAS
PubMed
Google Scholar
Capuano M, Iaffaldano L, Tinto N, Montanaro D, Capobianco V, Izzo V, et al. MicroRNA-449a overexpression, reduced NOTCH1 signals and scarce goblet cells characterize the small intestine of celiac patients. PLoS One. 2011;6(12):e29094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buurman R, Gurlevik E, Schaffer V, Eilers M, Sandbothe M, Kreipe H, et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology. 2012;143(3):811–20. e811-815.
Article
CAS
PubMed
Google Scholar
Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83.
Article
CAS
PubMed
Google Scholar
Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6(10):931–40.
Article
CAS
PubMed
Google Scholar
Wang Z, Chen Z, Gao Y, Li N, Li B, Tan F, et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage non-small cell lung cancer. Cancer Biol Ther. 2011;11(5):490–6.
Article
CAS
PubMed
Google Scholar
Feng M, Yu Q. MiR-449 regulates CDK-Rb-E2F1 through an auto-regulatory feedback circuit. Cell Cycle. 2010;9(2):213–4.
Article
CAS
PubMed
Google Scholar
Noonan EJ, Place RF, Basak S, Pookot D, Li LC. MiR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget. 2010;1(5):349–58.
Article
PubMed
PubMed Central
Google Scholar
Chen L, Chan TH, Yuan YF, Hu L, Huang J, Ma S, et al. CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Invest. 2010;120(4):1178–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.
Article
CAS
PubMed
Google Scholar
Wei Y, Van Nhieu JT, Prigent S, Srivatanakul P, Tiollais P, Buendia MA. Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, beta-catenin expression, and clinical features. Hepatology. 2002;36(3):692–701.
Article
CAS
PubMed
Google Scholar
Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464–74.
Article
CAS
PubMed
Google Scholar
Zheng F, Liao YJ, Cai MY, Liu TH, Chen SP, Wu PH, et al. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet. 2015;11(2):e1004873.
Article
PubMed
PubMed Central
Google Scholar
Arbuthnot P, Kew M, Fitschen W. C-fos and c-myc oncoprotein expression in human hepatocellular carcinomas. Anticancer Res. 1991;11(2):921–4.
CAS
PubMed
Google Scholar
Yuen MF, Wu PC, Lai VC, Lau JY, Lai CL. Expression of c-Myc, c-Fos, and c-jun in hepatocellular carcinoma. Cancer. 2001;91(1):106–12.
Article
CAS
PubMed
Google Scholar
Li S, Fu H, Wang Y, Tie Y, Xing R, Zhu J, et al. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology. 2009;49(4):1194–202.
Article
CAS
PubMed
Google Scholar
Reichmann E, Schwarz H, Deiner EM, Leitner I, Eilers M, Berger J, et al. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell. 1992;71(7):1103–16.
Article
CAS
PubMed
Google Scholar
Fialka I, Schwarz H, Reichmann E, Oft M, Busslinger M, Beug H. The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J Cell Biol. 1996;132(6):1115–32.
Article
CAS
PubMed
Google Scholar
Gherardi E, Stoker M. Hepatocytes and scatter factor. Nature. 1990;346(6281):228.
Article
CAS
PubMed
Google Scholar
Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006;12(12):3657–60.
Article
CAS
Google Scholar
You H, Ding W, Dang H, Jiang Y, Rountree CB. C-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology. 2011;54(3):879–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135(6):2128–40. 2140 e2121-2128.
Article
CAS
PubMed
Google Scholar