Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding C, Gallant M, Gareau Y, Griffin P, Labelle M, Lazbenik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995, 376: 37-43. 10.1038/376037a0.
Article
CAS
PubMed
Google Scholar
Datta R, Banach D, Kojima H, Talanian RV, Alnemri ES, Wong WW, Kufe DW: Activation of the CPP32 protease in apoptosis induced by 1-b-D arabinofuranosyl cytosine and other DNA damaging agents. Blood. 1996, 88: 1936-1943.
CAS
PubMed
Google Scholar
Wagner KW, King F, Nomoto K, Knee DA, Hampton G, Nasoff M, Deveraux QL: Activation and suppression of the TRAIL death-receptor pathway in chemotherapy sensitive and resistant follicular lymphoma. Cancer Biol Ther. 2003, 2: 534-540.
Article
CAS
PubMed
Google Scholar
Debatin KM: Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother. 2004, 53: 153-159. 10.1007/s00262-003-0474-8.
Article
PubMed
Google Scholar
Kolenko VM, Uzzo RG, Bukowski R, Finke JH: Caspase-dependent and -independent death pathways in cancer therapy. Apoptosis. 2000, 5: 17-20. 10.1023/A:1009677307458.
Article
CAS
PubMed
Google Scholar
Mathiasen IS, Jaattela M: Triggering caspase-independent cell death to combat cancer. Trends Mol Med. 2002, 8: 212-220. 10.1016/S1471-4914(02)02328-6.
Article
CAS
PubMed
Google Scholar
Ofir R, Seidman R, Rabinski T, Krup M, Yavelsky V, Weinstein Y, Wolfson M: Paclitaxel-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ. 2002, 9: 636-642. 10.1038/sj.cdd.4401012.
Article
CAS
PubMed
Google Scholar
Miller TP, Chase EM, Dalton WS, Grogan TM: The phenomenon of multidrug resistance in non Hodgkin's lymphoma. Cancer Treat Res. 1996, 85: 107-117.
Article
CAS
PubMed
Google Scholar
Liu Q, Ohshima K, Kikuchi M: High expression of MDR-1 gene and P-glycoprotein in initial and re-biopsy specimens of relapsed B-cell lymphoma. Histopathology. 2001, 38: 209-216. 10.1046/j.1365-2559.2001.01076.x.
Article
CAS
PubMed
Google Scholar
Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker RJ, Fruehauf JP: Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to paclitaxel and doxorubicin. Clin Cancer Res. 1998, 4: 389-398.
CAS
PubMed
Google Scholar
Hegewisch-Becker S, Staib F, Loning T, Pichlmeier U, Kroger N, Reymann A, Hossfeld DK: No evidence of significant activity of the multidrug resistance gene product in primary human breast cancer. Ann Oncol. 1998, 9: 85-93. 10.1023/A:1008255725515.
Article
CAS
PubMed
Google Scholar
Yang X, Uziely B, Groshen S, Lukas J, Israel V, Russell C, Dunnington G, Formenti S, Muggia F, Press MF: MDR1 gene expression in primary and advanced breast cancer. Lab Invest. 1999, 79: 271-280.
CAS
PubMed
Google Scholar
Narita T, Kimura N, Sato M, Matsuura N, Kannagi R: Altered expression of integrins in adriamycin-resistant human breast cancer cells. Anticancer Res. 1998, 18: 257-262.
CAS
PubMed
Google Scholar
de la Fuente MT, Casanova B, Cantero E, Hernandez del Cerro M, Garcia-Marco J, Silva A, Garcia-Pardo A: Involvement of p53 in alpha4beta1 integrin-mediated resistance of B-CLL cells to fludarabine. Biochem Biophys Res Commun. 2003, 311: 708-712. 10.1016/j.bbrc.2003.10.054.
Article
CAS
PubMed
Google Scholar
Voorzanger-Rousselot N, Favrot MC, Blay JY: Resistance to cytotoxic chemotherapy induced by CD40 ligand in lymphoma cells. Blood. 1998, 92: 3381-3387.
CAS
PubMed
Google Scholar
Voorzanger-Rousselot N, Blay JY: CD40L expression on B lymphoma and carcinoma cells: implication for tumor resistance and autoprotection. Leuk lymphoma. 2004, 45: 1239-1245. 10.1080/1042819032000159834.
Article
CAS
PubMed
Google Scholar
Romano MF, Lamberti A, Tassone P, Alfinito F, Costantini S, Chiurazzi F, Defrance T, Bonelli P, Tuccillo F, Turco MC, Venuta S: Triggering of CD40 antigen inhibits fludarabine-induced apotosis in B chronic leukemia cells. Blood. 1998, 92: 990-995.
CAS
PubMed
Google Scholar
de Totero D, Tazzari PL, Capaia M, Montera MP, Clavio M, Balleari E, Foa R, Gobbi M: CD40 triggering enhances fludarabine-induced apoptosis of chronic lymphocytic leukemia B-cells through autocrine release of tumor necrosis factor-alpha and interferon-gama and tumor necrosis factor receptor-I-II upregulation. Haematologica. 2003, 88: 148-158.
CAS
PubMed
Google Scholar
Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C, Lui YJ, Rousset F, Saeland S: The CD40 antigen and its ligand. Annu Rev Immunol. 1994, 12: 881-922. 10.1146/annurev.iy.12.040194.004313.
Article
CAS
PubMed
Google Scholar
Schattner J, Elkon KB, Yoo DH, Tumang J, Krammer PH, Crow MK, Friedman SM: CD40 ligation induces Apo-1/Fas expression on human lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J Exp Med. 1995, 182: 1557-1565. 10.1084/jem.182.5.1557.
Article
CAS
PubMed
Google Scholar
Holder MJ, Wang H, Milner AE, Casamayor M, Armitage R, Spriggs MK, Fanslow WC, MacLennan LC, Gregory CD, Gordon J: Suppression of apoptosis in normal and neoplastic human B lymphocytes by CD40 ligand is dependent of Bcl-2 induction. Eur J Immunol. 1993, 23: 2368-2371.
Article
CAS
PubMed
Google Scholar
Johnson PW, Watt SM, Betts DR, Davies D, Jordan S, Norton AJ, Lister TA: Isolated follicular lymphoma cells are resistant to apoptosis and can be grown in vitro in the CD40/stromal cell system. Blood. 1993, 82: 1848-1857.
CAS
PubMed
Google Scholar
Funakoshi S, Longo DL, Beckwith M, Conley DK, Tsarfaty G, Tsarfaty I, Armitage RJ, Fanslow WC, Spriggs MK, Murphy WJ: Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood. 1994, 83: 2787-2794.
CAS
PubMed
Google Scholar
Buske C, Twiling A, Gogowski G, Schreiber K, Feuringbuske M, Wulf GG, Hiddemann W, Wormann B: In vitro activation of low-grade non-Hodgkin's lymphoma by murine fibroblasts, IL-4, anti-CD40 antibodies and the soluble CD40 ligand. Leukemia. 1997, 11: 1862-1867. 10.1038/sj.leu.2400822.
Article
CAS
PubMed
Google Scholar
Ghia P, Boussiotis VA, Schultze JL, Cardoso AA, Dorfman DM, Gribben JG, Freedman AS, Nadler LM: Unbalanced expression of Bcl-2 family proteins in follicular lymphoma: contribution of CD40 signaling in promoting survival. Blood. 1998, 91: 244-251.
CAS
PubMed
Google Scholar
Wang H, Grand RJA, Milner AE, Armitage RJ, Gordon J, Gregory CD: Repression of apoptosis in human B-lymphoma cells by CD40-ligand and Bcl-2: relationship to the cell-cycle and role of the retinoblastoma protein. Oncogene. 1996, 13: 373-379.
CAS
PubMed
Google Scholar
Andersen NS, Larsen JK, Christiansen J, Pedersen LB, Christophersen NS, Geisler CH, Jurlander J: Soluble CD40 ligand induces selective proliferation of lymphoma cells in primary mantle cell lymphoma cell cultures. Blood. 2000, 96: 2219-2225.
CAS
PubMed
Google Scholar
Francisco JA, Donaldson KL, Chace D, Siegall CB, Wahl AF: Agonistic properties and in vivo antitumor activity of the anti-CD40 antibody SGN-14. Cancer Res. 2000, 60: 3225-3231.
CAS
PubMed
Google Scholar
Younes A, Kadin ME: Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy. J Clin Oncol. 2003, 21: 3526-3534. 10.1200/JCO.2003.09.037.
Article
CAS
PubMed
Google Scholar
Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M, Vauthey JN, Carbone A, Younes A: MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood. 2003, 102: 1019-1027. 10.1182/blood-2002-11-3507.
Article
CAS
PubMed
Google Scholar
Stamenkovic I, Clark EA, Seed B: A B lymphocyte activation molecule related to nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J. 1989, 8: 1403-1410.
CAS
PubMed
PubMed Central
Google Scholar
Vestal RE, Wingett DG, Knight K, Stillinger RA, Cantor GH, Nielson CP, Fanslow WC, Ghalie R: Expression of CD40 in breast, colon, lung and ovarian tumors. Proc Am Assoc Cancer Res. 1997, 38: A1550-
Google Scholar
Wingett DG, Vestal RE, Forcier K, Hadjokas N, Nielson CP: CD40 is functionally expressed on human breast carcinomas: variable inducibility by cytokines and enhancement of Fas-mediated apoptosis. Breast Cancer Res Treat. 1998, 50: 27-36. 10.1023/A:1006012607452.
Article
CAS
PubMed
Google Scholar
Von Leoprechting A, van der Bruggen P, Pahl HL, Aruffo A, Simon JC: Stimulation of CD40 on immunogenic human malignant melanomas augments their cytotoxic T lymphocyte-mediated lysis and induces apoptosis. Cancer Res. 1999, 59: 1287-1294.
CAS
PubMed
Google Scholar
Hirano A, Longo DL, Taub DD, Ferris DK, Young LS, Eliopoulos AG, Agathanggelou A, Cullen N, Macartney J, Fanslow WC, Murphy WJ: Inhibition of breast carcinoma growth by a soluble recombinant CD40 ligand. Blood. 1999, 93: 2999-3007.
CAS
PubMed
Google Scholar
Ghamande S, Hylander BL, Oflazoglu E, Lele S, Fanslow W, Repasky EA: Recombinant CD40 ligand therapy has significant antitumor effects on CD40-positive ovarian tumor xenografts grown in SCID mice and demonstrates an augmented effect with cisplatin. Cancer Res. 2001, 61: 7556-7562.
CAS
PubMed
Google Scholar
Yamaguchi H, Tanaka F, Sadanaga N, Ohta M, Inoue H, Mori M: Stimulation of CD40 inhibits Fas- or chemotherapy-mediated apoptosis and increases cell motility in human gastric carcinoma cells. Int J Oncol. 2003, 23: 1697-1702.
CAS
PubMed
Google Scholar
Stumm S, Meyer A, Lindner M, Bastert G, Wallwiener D, Guckel B: Paclitaxel Treatment of Breast Cancer Cell Lines Modulates Fas/Fas Ligand Expression and Induces Apoptosis Which Can Be Inhibited through the CD40 Receptor. Oncology. 2004, 66: 101-111. 10.1159/000077435.
Article
CAS
PubMed
Google Scholar
Tong AW, Papayoti MH, Netto G, Armstrong DT, Ordonez G, Lawson JM, Stone M: Growth-inhibitory effects of CD40 ligand (CD154) and its endogeneous expression in human breast cancer. Clin Cancer Res. 2001, 7: 691-703.
CAS
PubMed
Google Scholar
Menetrier-Caux C, Bain C, Favrot MC, Duc A, Blay JY: Renal cell carcinoma induces interleukin 10 and prostaglandin E2 production by monoocytes. Br J Cancer. 1999, 79: 119-130. 10.1038/sj.bjc.6690021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandlekar S, Yu R, Tan TH, Kong AN: Activation of caspase-3 and c-jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells. Cancer Res. 2000, 60: 5999-6000.
Google Scholar
Bellosillo B, Dalmau M, Colomer D, Gil J: Involvement of CED-3/ICE proteases in the apoptosis of B-chronic lymphocytic leukemia cells. Blood. 1997, 89: 3378-3384.
CAS
PubMed
Google Scholar
Jänicke RU, Engels IH, Dunkern T, Kaina B, Schulze-Osthoff K, Porter AG: Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells. Oncogene. 2001, 20: 5043-5053. 10.1038/sj.onc.1204659.
Article
PubMed
Google Scholar
Friedrich K, Wieder T, Von Haefen C, Radetzki S, Jänicke R, Schulze-Osthoff K, Dörken B, Daniel PT: Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene. 2001, 20: 2749-2760. 10.1038/sj.onc.1204342.
Article
CAS
PubMed
Google Scholar
Blanc C, Deveraux QL, Krajewski S, Jänicke RU, Porter AG, Reed JC, Jaggi R, Marti A: Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res. 2000, 60: 4386-4390.
CAS
PubMed
Google Scholar
Johnson KR, Young KK, Fan W: Agonistic interplay between antimitotic and G1-S arresting agents observed in experimental combination therapy. Clin Cancer Res. 1999, 5: 2559-2565.
CAS
PubMed
Google Scholar
Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y, Seger R: Paclitaxel-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene. 2001, 20: 147-155. 10.1038/sj.onc.1204062.
Article
CAS
PubMed
Google Scholar
Calastretti A, Bevilacqua A, Ceriani C, Vigano S, Zancai P, Capaccioli S, Nicolin A: Damaged microtubules can inactivate BCL-2 by means of the mTOR kinase. Oncogene. 2001, 20: 6172-6180. 10.1038/sj.onc.1204751.
Article
CAS
PubMed
Google Scholar
Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R: Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995, 82: 405-414. 10.1016/0092-8674(95)90429-8.
Article
CAS
PubMed
Google Scholar
Jarvis WD, Grant S: The role of ceramide in the cellular response to cytotoxic agents. Curr Opin Oncol. 1998, 10: 552-559.
Article
CAS
PubMed
Google Scholar
Tepper AD, de Vries E, van Blitterswijk WJ, Borst J: Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. J Clin Invest. 1999, 103: 971-978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radin NS: Killing cancer cells by poly-drug elevation of ceramide levels: a hypothesis whose time has come?. Eur J Biochem. 2001, 268: 193-204. 10.1046/j.1432-1033.2001.01845.x.
Article
CAS
PubMed
Google Scholar
Mizushima N, Koike R, Kohsaka H, Kushi Y, Handa S, Yagita H, Miyasaka N: Ceramide induces apoptosis via CPP32 activation. FEBS Lett. 1996, 395: 267-271. 10.1016/0014-5793(96)01050-2.
Article
CAS
PubMed
Google Scholar
Gamen S, Marzo I, Anel A, Pineiro A, Naval J: CPP32 inhibition prevents Fas-induced ceramide generation and apoptosis in human cells. FEBS Lett. 1996, 390: 232-237. 10.1016/0014-5793(96)00666-7.
Article
CAS
PubMed
Google Scholar
Kawabata Y, Hirokawa M, Kitabayashi A, Horiuchi T, Kuroki J, Miura AB: Defective apoptotic signal transduction pathway downstream of caspase-3 in human B-lymphoma cells: A novel mechanism of nuclear apoptosis resistance. Blood. 1999, 94: 3523-3530.
CAS
PubMed
Google Scholar
Hirokawa M, Kawabata Y, Miura AB: Dysregulation of apoptosis and a novel mechanism of defective apoptotic signal transduction in human B-cell neoplasms. Leuk Lymphoma. 2002, 43: 243-249. 10.1080/10428190290005991.
Article
CAS
PubMed
Google Scholar
Henkels KM, Turchi JJ: Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res. 1999, 59: 3077-3083.
CAS
PubMed
Google Scholar
Choi MS, Boise LH, Gottschalk AR, Quintans J, Thompson CB, Klaus GG: The role of bcl-XL in CD40-mediated rescue from anti-mu-induced apoptosis in WEHI-231 B lymphoma cells. Eur J Immunol. 1995, 25: 1352-1357.
Article
CAS
PubMed
Google Scholar
Wang Z, Karras JG, Howard RG, Rothstein TL: Induction of bcl-x by CD40 engagement rescues sIg-induced apoptosis in murine B cells. J Immunol. 1995, 155: 3722-3725.
CAS
PubMed
Google Scholar
Tuscano JM, Druey KM, Riva A, Pena J, Thompson CB, Kehrl JH: Bcl-x rather than Bcl-2 mediates CD40-dependent centrocyte survival in the germinal center. Blood. 1996, 88: 1359-1364.
CAS
PubMed
Google Scholar
Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G: NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci USA. 1999, 96: 9136-9141. 10.1073/pnas.96.16.9136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker SJ, Reddy EP: Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene. 1996, 12: 1-9.
CAS
PubMed
Google Scholar
Cheng G, Baltimore D: TANK, a co-inducer with TRAF2 of TNF and CD40L-mediated NFκB activation. Genes & Development. 1996, 10: 963-973.
Article
CAS
Google Scholar
Wang H, Grand RJ, Milner AE, Armitage RJ, Gordon J, Gregory CD: Repression of apoptosis in human B-lymphoma cells by CD40-ligand and Bcl-2: relationship to the cell-cycle and role of the retinoblastoma protein. Oncogene. 1996, 13: 373-379.
CAS
PubMed
Google Scholar
Teoh G, Tai YT, Urashima M, Shirahama S, Matsuzaki M, Chauhan D, Treon SP, Raje N, Hideshima T, Shima Y, Anderson KC: CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood. 2000, 95: 1039-1046.
CAS
PubMed
Google Scholar