Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82(5):488–96.
Article
CAS
PubMed
Google Scholar
Guerrero Manriquez GG, Tuero I. Adjuvants: friends in vaccine formulations against infectious diseases. Hum Vaccin Immunother. 2021;17(10):3539–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasquale AD, Preiss S, Silva FTD, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines. 2015;3(2):320–43.
Article
PubMed
PubMed Central
Google Scholar
Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol. 2012;12(7):479–91.
Article
CAS
PubMed
Google Scholar
Schijns VEJC. Immunological concepts of vaccine adjuvant activity: Commentary. Curr Opin Immunol. 2000;12(4):456–63.
Article
CAS
PubMed
Google Scholar
Kubelkova K, Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front Cell Infect Microbiol. 2019;9:241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science. 2006;314(5807):1936–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apostólico JdS. Lunardelli VAS, Coirada FC, Boscardin SB, Rosa DS: Adjuvants: Classification, Modus Operandi, and Licensing. JImmunol Res. 2016;2016:1459394.
Google Scholar
Franchi L, Park JH, Shaw MH, Marina-Garcia N, Chen G, Kim YG, Núñez G. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell Microbiol. 2008;10(1):1–8.
CAS
PubMed
Google Scholar
Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 2009;30(1):23–32.
Article
CAS
PubMed
Google Scholar
Ho NI, Huis in 't Veld LGM, Raaijmakers TK, Adema GJ. Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front Immunol. 2018;9:2874.
Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, Kluger C, Salazar AM, Colonna M, Steinman RM. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med. 2009;206(7):1589–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer DL, Kurtz JR, Grant SB, Immethun VE, McLachlan JB: Adjuvant combinations activate dendritic cells and contribute to antigen-specific CD4 T cell expansion. J Immunol 2020, 204(1 Supplement):166.115–166.115.
Sugai T, Mori M, Nakazawa M, Ichino M, Naruto T, Kobayashi N, Kobayashi Y, Minami M, Yokota S. A CpG-containing oligodeoxynucleotide as an efficient adjuvant counterbalancing the Th1/Th2 immune response in diphtheria–tetanus–pertussis vaccine. Vaccine. 2005;23(46):5450–6.
Article
CAS
PubMed
Google Scholar
Stils HF Jr. Adjuvants and antibody production: dispelling the myths associated with freund’s complete and other adjuvants. ILAR J. 2005;46(3):280–93.
Article
Google Scholar
Comberlato A, Paloja K, Bastings MMC. Nucleic acids presenting polymer nanomaterials as vaccine adjuvants. J Mater Chem B. 2019;7(41):6321–46.
Article
CAS
PubMed
Google Scholar
Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol. 2013;3:406–406.
Article
PubMed
PubMed Central
Google Scholar
Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev. 2011;239(1):178–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diebold SS, Kaisho T, Hemmi H, Akira S. Reis e Sousa C: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31.
Article
CAS
PubMed
Google Scholar
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732–8.
Article
CAS
PubMed
Google Scholar
Martins KA, Bavari S, Salazar AM. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines. 2015;14(3):447–59.
Article
CAS
PubMed
Google Scholar
Stahl-Hennig C, Eisenblätter M, Jasny E, Rzehak T, Tenner-Racz K, Trumpfheller C, Salazar AM, Uberla K, Nieto K, Kleinschmidt J, et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog. 2009;5(4):e1000373.
Article
PubMed
PubMed Central
Google Scholar
Temizoz B, Kuroda E, Ishii KJ. Combination and inducible adjuvants targeting nucleic acid sensors. Curr Opin Pharmacol. 2018;41:104–13.
Article
CAS
PubMed
Google Scholar
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.
Article
CAS
PubMed
Google Scholar
Li Q, Yan Y, Liu J, Huang X, Zhang X, Kirschning C, Xu HC, Lang PA, Dittmer U, Zhang E, et al. Toll-Like Receptor 7 Activation Enhances CD8+ T Cell Effector Functions by Promoting Cellular Glycolysis. Front Immunol. 2019;10:2191–2191.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komal A, Noreen M, El-Kott AF. TLR3 agonists: RGC100, ARNAX, and poly-IC: a comparative review. Immunol Res. 2021;69(4):312–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh JZ, Kurche JS, Burchill MA, Kedl RM. TLR7 enables cross-presentation by multiple dendritic cell subsets through a type I IFN-dependent pathway. Blood. 2011;118(11):3028–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ziegler A, Soldner C, Lienenklaus S, Spanier J, Trittel S, Riese P, Kramps T, Weiss S, Heidenreich R, Jasny E, et al. A New RNA-based adjuvant enhances virus-specific vaccine responses by locally Triggering TLR- and RLH-Dependent Effects. J Immunol. 2017;198(4):1595–605.
Article
CAS
PubMed
Google Scholar
Negishi H, Yanai H, Nakajima A, Koshiba R, Atarashi K, Matsuda A, Matsuki K, Miki S, Doi T, Aderem A et al: Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol 2012, 13(7):659–666.
Hochheiser K, Klein M, Gottschalk C, Hoss F, Scheu S, Coch C, Hartmann G, Kurts C. Cutting Edge: The RIG-I Ligand 3pRNA Potently Improves CTL Cross-Priming and Facilitates Antiviral Vaccination. J Immunol. 2016;196(6):2439–43.
Article
CAS
PubMed
Google Scholar
Bourquin C, Schmidt L, Lanz AL, Storch B, Wurzenberger C, Anz D, Sandholzer N, Mocikat R, Berger M, Poeck H, et al. Immunostimulatory RNA oligonucleotides induce an effective antitumoral NK cell response through the TLR7. J Immunol. 2009;183(10):6078–86.
Article
CAS
PubMed
Google Scholar
Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen C-JJ, Dunbar PR, Wadley RB, Jeet V et al: Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. The Journal of experimental medicine 2010, 207(6):1247–1260.
Heidenreich R, Jasny E, Kowalczyk A, Lutz J, Probst J, Baumhof P, Scheel B, Voss S, Kallen KJ, Fotin-Mleczek M. A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int J Cancer. 2015;137(2):372–84.
Article
CAS
PubMed
Google Scholar
Kwak HW, Park H-J, Ko HL, Park H, Cha MH, Lee S-M, Kang KW, Kim R-H, Ryu SR, Kim H-J, et al. Cricket paralysis virus internal ribosome entry site-derived RNA promotes conventional vaccine efficacy by enhancing a balanced Th1/Th2 response. Vaccine. 2019;37(36):5191–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YH, Bang YJ, Park HJ, Li Ko H, Park SI, Hwang KA, Kim H, Nam JH. Inactivated influenza vaccine formulated with single-stranded RNA-based adjuvant confers mucosal immunity and cross-protection against influenza virus infection. Vaccine. 2020;38(39):6141–52.
Article
CAS
PubMed
Google Scholar
Lee SJ, Park H-J, Ko HL, Lee JE, Lee HJ, Kim H, Nam J-H. Evaluation of glycoprotein E subunit and live attenuated varicella-zoster virus vaccines formulated with a single-strand RNA-based adjuvant. Immun Inflamm Dis. 2020;8(2):216–27.
Article
PubMed
PubMed Central
Google Scholar
Rezaei T, Davoudian E, Khalili S, Amini M, Hejazi M, de la Guardia M, Mokhtarzadeh A. Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res. 2021;34(5):869–91.
Article
CAS
PubMed
Google Scholar
Kuryk L, Bertinato L, Staniszewska M, Pancer K, Wieczorek M, Salmaso S, Caliceti P, Garofalo M: From Conventional Therapies to Immunotherapy: Melanoma Treatment in Review. Cancers (Basel) 2020, 12(10).
Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S. Immune system: a double-edged sword in cancer. Inflamm Res. 2013;62(9):823–34.
Article
CAS
PubMed
Google Scholar
Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA, et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature. 2012;491(7424):449–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Du J-Y, Jiang Z, Okimura T, Oda T, Yu Q, Jin J-O. Ascophyllan purified from Ascophyllum nodosum induces Th1 and Tc1 immune responses by promoting dendritic cell maturation. Mar Drugs. 2014;12(7):4148–64.
Article
PubMed
PubMed Central
Google Scholar
Honma K, Kohno Y, Saito K, Shimojo N, Horiuchi T, Hayashi H, Suzuki N, Hosoya T, Tsunoo H, Niimi H. Allergenic epitopes of ovalbumin (OVA) in patients with hen’s egg allergy: inhibition of basophil histamine release by haptenic ovalbumin peptide. Clin Exp Immunol. 1996;103(3):446–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendoza JL, Escalante NK, Jude KM, Sotolongo Bellon J, Su L, Horton TM, Tsutsumi N, Berardinelli SJ, Haltiwanger RS, Piehler J, et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 2019;567(7746):56–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Front Immunol. 2020;11:615240.
Article
CAS
PubMed
Google Scholar
McKee AS, Munks MW, Marrack P. How Do Adjuvants Work? Important Considerations for New Generation Adjuvants. Immunity. 2007;27(5):687–90.
Article
CAS
PubMed
Google Scholar
Jin B, Sun T, Yu XH, Liu CQ, Yang YX, Lu P, Fu SF, Qiu HB, Yeo AE. Immunomodulatory effects of dsRNA and its potential as vaccine adjuvant. J Biomed Biotechnol. 2010;2010:690438.
Article
PubMed
PubMed Central
Google Scholar
Łyszkiewicz M, Witzlau K, Pommerencke J, Krueger A. Chemokine receptor CX3CR1 promotes dendritic cell development under steady-state conditions. Eur J Immunol. 2011;41(5):1256–65.
Article
PubMed
Google Scholar
Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114–114.
Article
PubMed
PubMed Central
Google Scholar
Guéry JC, Ria F, Adorini L. Dendritic cells but not B cells present antigenic complexes to class II-restricted T cells after administration of protein in adjuvant. J Exp Med. 1996;183(3):751–7.
Article
PubMed
Google Scholar
Pooley JL, Heath WR, Shortman K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol. 2001;166(9):5327–30.
Article
CAS
PubMed
Google Scholar
Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315(5808):107–11.
Article
CAS
PubMed
Google Scholar
Nierkens S, Tel J, Janssen E, Adema GJ. Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends Immunol. 2013;34(8):361–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-López M, Iborra S, Conde-Garrosa R, Sancho D. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur J Immunol. 2015;45(1):119–29.
Article
PubMed
Google Scholar
Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. Spatiotemporally Distinct Interactions with Dendritic Cell Subsets Facilitates CD4+ and CD8+ T Cell Activation to Localized Viral Infection. Immunity. 2015;43(3):554–65.
Article
CAS
PubMed
Google Scholar
Alexandre YO, Ghilas S, Sanchez C, Le Bon A, Crozat K, Dalod M. XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses. J Exp Med. 2016;213(1):75–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spranger S, Dai D, Horton B, Gajewski TF. Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell. 2017;31(5):711-723.e714.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Güttler S, Hutloff A, Mages HW, Ranke K, Schaefer M, et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity. 2009;31(5):823–33.
Article
CAS
PubMed
Google Scholar
Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207(6):1283–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol. 2022;19(1):3–13.
Article
CAS
PubMed
Google Scholar
Raskov H, Orhan A, Christensen JP, Gogenur I. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124(2):359–67.
Article
CAS
PubMed
Google Scholar
Kim CW, Kim KD, Lee HK. The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Rep. 2021;54(1):31–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Theisen D, Murphy K: The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Res 2017, 6:98.
Karachaliou N, Gonzalez-Cao M, Crespo G, Drozdowskyj A, Aldeguer E, Gimenez-Capitan A, Teixido C, Molina-Vila MA, Viteri S, De Los Llanos Gil M et al: Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol 2018, 10:1758834017749748.