Boyle P, Levin B: World cancer report 2008: IARC Press, International Agency for Research on Cancer; 2008. https://www.cabdirect.org/cabdirect/abstract/20103010665.
Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, Zeng H, Zhou J, Wei W. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021;41(11):1183–94.
Article
Google Scholar
Lima SM, Kehm RD, Terry MB. Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. EClinicalMedicine. 2021;38:100985.
Article
PubMed
PubMed Central
Google Scholar
Carioli G, Bertuccio P, Malvezzi M, Rodriguez T, Levi F, Boffetta P, La Vecchia C, Negri E. Cancer mortality predictions for 2019 in Latin America. Int J Cancer. 2020;147(3):619–32.
Article
CAS
PubMed
Google Scholar
Narod SA, Iqbal J, Miller AB. Why have breast cancer mortality rates declined? J Cancer Policy. 2015;5:8–17.
Article
Google Scholar
Hendrick RE, Helvie MA, Monticciolo DL. Breast cancer mortality rates have stopped declining in US women younger than 40 years. Radiology. 2021;299(1):143–9.
Article
PubMed
Google Scholar
Hendrick RE, Baker JA, Helvie MA. Breast cancer deaths averted over 3 decades. Cancer. 2019;125(9):1482–8.
Article
PubMed
Google Scholar
Reddy K. Triple-negative breast cancers: an updated review on treatment options. Curr Oncol. 2011;18(4): e173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collignon J, Lousberg L, Schroeder H, Jerusalem G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer: Targets and Therapy. 2016;8:93.
CAS
Google Scholar
Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15):4429–34.
Article
PubMed
Google Scholar
Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007;8(3):235–44.
Article
PubMed
Google Scholar
Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet. 2016;293(2):247–69.
Article
CAS
PubMed
Google Scholar
Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16(Suppl 1):1–11.
Article
PubMed
Google Scholar
Finn RS, Press MF, Dering J, Arbushites M, Koehler M, Oliva C, Williams LS, Di Leo A. Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor expression and benefit from lapatinib in a randomized trial of paclitaxel with lapatinib or placebo as first-line treatment in HER2-negative or unknown metastatic breast cancer. J Clin Oncol. 2009;27(24):3908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Florea A-M, Büsselberg D. Breast cancer and possible mechanisms of therapy resistance. Journal of Local and Global Health Science. 2013;2013(1):2.
Article
Google Scholar
Tang Y, Wang Y, Kiani MF, Wang B. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin Breast Cancer. 2016;16(5):335–43.
Article
PubMed
Google Scholar
Chalakur-Ramireddy NK, Pakala SB. Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer. Biosci Rep. 2018;38(1):BSR20171357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irshad S, Ellis P, Tutt A. Molecular heterogeneity of triple-negative breast cancer and its clinical implications. Curr Opin Oncol. 2011;23(6):566–77.
Article
CAS
PubMed
Google Scholar
Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 2000;19(22):6141–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng L, Zhou M-M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002;513(1):124–8.
Article
CAS
PubMed
Google Scholar
Shu S, Wu H-J, Jennifer YG, Zeid R, Harris IS, Jovanović B, Murphy K, Wang B, Qiu X, Endress JE. Synthetic lethal and resistance interactions with BET bromodomain inhibitors in triple-negative breast cancer. Molecular cell. 2020;78(6):1096–113 (e1098).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao D, Zhang J, Wang J, Pan D, He Z. Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. J Enzyme Inhib Med Chem. 2020;35(1):713–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang G-J, Song Y-Q, Wang W, Han Q-B, Ma D-L, Leung C-H. An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells. Bioorg Chem. 2021;114:105158.
Article
CAS
PubMed
Google Scholar
Yoo M, Park TH, Yoo M, Kim Y, Lee J-Y, Lee KM, Ryu SE, Lee BI, Jung K-Y, Park CH. Synthesis and Structure-Activity Relationships of Aristoyagonine Derivatives as Brd4 Bromodomain Inhibitors with X-ray Co-Crystal Research. Molecules. 2021;26(6):1686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Q, Wang C, Xiang Q, Wang R, Zhang C, Zhang M, Xue X, Luo G, Liu X, Wu X. Discovery and optimization of novel N-benzyl-3, 6-dimethylbenzo [d] isoxazol-5-amine derivatives as potent and selective TRIM24 bromodomain inhibitors with potential anti-cancer activities. Bioorg Chem. 2020;94:103424.
Article
CAS
PubMed
Google Scholar
Bi X, Chen Y, Sun Z, Lu W, Xu P, Lu T, Ding H, Zhang N, Jiang H, Chen K. Structure-based drug optimization and biological evaluation of tetrahydroquinolin derivatives as selective and potent CBP bromodomain inhibitors. Bioorg Med Chem Lett. 2020;30(22):127480.
Article
CAS
PubMed
Google Scholar
Taniguchi Y. The bromodomain and extra-terminal domain (BET) family: functional anatomy of BET paralogous proteins. Int J Mol Sci. 2016;17(11):1849.
Article
PubMed Central
CAS
Google Scholar
Poot RA, Dellaire G, Hülsmann BB, Grimaldi MA, Corona DF, Becker PB, Bickmore WA, Varga-Weisz PD. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 2000;19(13):3377–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones MH, Hamana N, Nezu J-i, Shimane M. A novel family of bromodomain genes. Genomics. 2000;63(1):40–5.
Article
CAS
PubMed
Google Scholar
Jung M, Gelato KA, Fernández-Montalván A, Siegel S, Haendler B. Targeting BET bromodomains for cancer treatment. Epigenomics. 2015;7(3):487–501.
Article
CAS
PubMed
Google Scholar
da Motta LL, Ledaki I, Purshouse K, Haider S, De Bastiani MA, Baban D, Morotti M, Steers G, Wigfield S, Bridges E. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017;36(1):122–32.
Article
PubMed
CAS
Google Scholar
Bevill SM, Olivares-Quintero JF, Sciaky N, Golitz BT, Singh D, Beltran AS, Rashid NU, Stuhlmiller TJ, Hale A, Moorman NJ. Gsk2801, a baz2/brd9 bromodomain inhibitor, synergizes with bet inhibitors to induce apoptosis in triple-negative breast cancer. Mol Cancer Res. 2019;17(7):1503–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM, Janiszewska M, Huh SJ, Liang Y, Ryan J. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529(7586):413–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clough E, Barrett T. The gene expression omnibus database. In: Statistical Genomics. edn.: Springer. 2016. pp. 93–110. https://www.nature.com/articles/nature16508.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hooft RW, Sander C, Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Bioinformatics. 1997;13(4):425–30.
Article
CAS
Google Scholar
Maestro: Schrödinger Release 2021–2: Maestro, Schrödinger, LLC, New York, NY. 2021. https://www.schrodinger.com/citations.
Lim VT, Hahn DF, Tresadern G, Bayly CI, Mobley DL. Benchmark assessment of molecular geometries and energies from small molecule force fields. F1000Research. 2020;9(1390):1390.
Article
CAS
Google Scholar
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Medicinal Chem. 2004;47(7):1750–9.
Article
CAS
Google Scholar
Grigoriadis A, Mackay A, Noel E, Wu PJ, Natrajan R, Frankum J, Reis-Filho JS, Tutt A. Molecular characterisation of cell line models for triple-negative breast cancers. BMC Genomics. 2012;13(1):619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harbor Protocols. 2018;2018(6):pdb (prot095505).
Google Scholar
Nga N, Ngoc T, Trinh N, Thuoc T, Thao D. Optimization and application of MTT assay in determining density of suspension cells. Anal Biochem. 2020;610:113937.
Article
CAS
PubMed
Google Scholar
Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Can Res. 2010;70(2):440–6.
Article
CAS
Google Scholar
Chou T, Martin N. CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. ComboSyn, Paramus, NJ; 2005. https://www.combosyn.com/.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115–e115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chakravarthi VP, Khristi V, Ghosh S, Yerrathota S, Dai E, Roby KF, Wolfe MW, Rumi MK. ESR2 is essential for gonadotropin-induced Kiss1 expression in granulosa cells. Endocrinology. 2018;159(11):3860–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(S1):S25–30.
Article
Google Scholar
Jurkovicova D, Smolkova B, Magyerkova M, Sestakova Z, Kajabova VH, Kulcsar L, Zmetakova I, Kalinkova L, Krivulcik T, Karaba M. Down-regulation of traditional oncomiRs in plasma of breast cancer patients. Oncotarget. 2017;8(44):77369.
Article
PubMed
PubMed Central
Google Scholar
Weber G, Shen F, Prajda N, Yeh Y, Yang H, Herenyiova M, Look KY. Increased signal transduction activity and down-regulation in human cancer cells. Anticancer Res. 1996;16(6A):3271–82.
CAS
PubMed
Google Scholar
Pérez-Salvia M, Esteller M. Bromodomain inhibitors and cancer therapy: From structures to applications. Epigenetics. 2017;12(5):323–39.
Article
PubMed
Google Scholar
de Andrés M, Madhusudan N, Bountra C, Oppermann U, Oreffo R. Bromodomain inhibitors are potent epigenetic regulators of catabolic gene expression in human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2018;26:S154.
Article
Google Scholar
Zawistowski JS, Bevill SM, Goulet DR, Stuhlmiller TJ, Beltran AS, Olivares-Quintero JF, Singh D, Sciaky N, Parker JS, Rashid NU. Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacologic targeting of the P-TEFb complex. Cancer Discov. 2017;7(3):302–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuhlmiller TJ, Miller SM, Zawistowski JS, Nakamura K, Beltran AS, Duncan JS, Angus SP, Collins KA, Granger DA, Reuther RA. Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains. Cell Rep. 2015;11(3):390–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith SG, Zhou M-M. The bromodomain: a new target in emerging epigenetic medicine. ACS Chem Biol. 2016;11(3):598–608.
Article
CAS
PubMed
Google Scholar
Andrikopoulou A, Liontos M, Koutsoukos K, Dimopoulos M-A, Zagouri F. The emerging role of BET inhibitors in breast cancer. The Breast. 2020;53:152–63.
Article
PubMed
PubMed Central
Google Scholar
Bevill SM. Transcriptional Adaptation to Targeted Inhibitors via BET Bromodomain Proteins in Triple-negative Breast Cancer. The University of North Carolina at Chapel Hill; 2018. https://www.proquest.com/pagepdf/2170697151?accountid=28920.
Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17(1):1–13.
Article
CAS
Google Scholar
Shu S, Polyak K. BET bromodomain proteins as cancer therapeutic targets. In: Cold Spring Harbor symposia on quantitative biology: 2016. Cold Spring Harbor Laboratory Press; 2016. pp. 123–9. https://scholar.archive.org/work/f7vezev6srejjjsrdb4pbeypqa/access/wayback/http://symposium.cshlp.org/content/81/123.full.pdf.
Sahni JM, Keri RA. Targeting bromodomain and extraterminal proteins in breast cancer. Pharmacol Res. 2018;129:156–76.
Article
CAS
PubMed
Google Scholar
Domenichini A, Adamska A, Falasca M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochimica et Biophysica Acta (BBA)-General Subjects. 2019;1863(1):52–60.
Article
CAS
Google Scholar
Zhang Y-L, Wang R-C, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol Med. 2017;14(1):90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khorsandi L, Orazizadeh M, Niazvand F, Abbaspour M, Mansouri E, Khodadadi A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratislava Medical Journal. 2017;118(2):123–8.
Article
CAS
PubMed
Google Scholar
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X. Targeting ferroptosis in breast cancer. Biomarker Research. 2020;8(1):1–27.
Article
Google Scholar
Chen Y, Xue J, Chen C, Yang B, Xu Q, Wu F, Liu F, Ye X, Meng X, Liu G. PPAR signaling pathway may be an important predictor of breast cancer response to neoadjuvant chemotherapy. Cancer Chemother Pharmacol. 2012;70(5):637–44.
Article
CAS
PubMed
Google Scholar
Fanale D, Amodeo V, Caruso S. The interplay between metabolism, PPAR signaling pathway, and cancer. In.: Hindawi; 2017. https://www.hindawi.com/journals/ppar/2017/1830626/.
Buck MB, Knabbe C. TGF-beta signaling in breast cancer. Ann N Y Acad Sci. 2006;1089(1):119–26.
Article
CAS
PubMed
Google Scholar
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol. 2020;43(1):1–18.
Article
CAS
Google Scholar
Tabassum S, Abbasi R, Ahmad N, Farooqi AA. Targeting of JAK-STAT signaling in breast cancer: therapeutic strategies to overcome drug resistance. In: Breast Cancer Metastasis and Drug Resistance. 2019. p. 271–81.
Chapter
Google Scholar
Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau C-S, Verstegen NJ, Ciampricotti M, Hawinkels LJ, Jonkers J. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lerebours F, Vacher S, Andrieu C, Espie M, Marty M, Lidereau R, Bieche I. NF-kappa B genes have a major role in inflammatory breast cancer. BMC Cancer. 2008;8(1):1–11.
Article
CAS
Google Scholar
Du Y, Grandis JR. Receptor-type protein tyrosine phosphatases in cancer. Chin J Cancer. 2015;34(2):61–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J-Y, Jung HH, Sohn I, Woo SY, Cho H, Cho EY, Lee JE, Kim SW, Nam SJ, Park YH. Prognostication of a 13-immune-related-gene signature in patients with early triple-negative breast cancer. Breast Cancer Res Treat. 2020;184(2):325–34.
Article
CAS
PubMed
Google Scholar
Ma Y, Li Y, Guo P, Zhao J, Qin Q, Wang J, Liang Z, Wei D, Wang Z, Shen J. Endothelial Cells Potentially Participate in the Metastasis of Triple-Negative Breast Cancer. J Immunol Res. 2022;2022:5412007.
Article
PubMed
PubMed Central
Google Scholar
Mukhopadhyay P, Chakraborty S, Ponnusamy MP, Lakshmanan I, Jain M, Batra SK. Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2011;1815(2):224–40.
Article
CAS
Google Scholar
Liu Y, Zhang Q, Wu J, Zhang H, Li X, Zheng Z, Luo M, Li L, Xiang Y, Yang F. Long non-coding RNA A2M-AS1 promotes breast cancer progression by sponging microRNA-146b to upregulate MUC19. Int J Gen Med. 2020;13:1305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu C, Sun J, Liu Y, Wang X, Wang L, Han C, Chen Q, Guan T, Li H, Zhang Y. Caveolin-1 facilitated KCNA5 expression, promoting breast cancer viability. Oncol Lett. 2018;16(4):4829–38.
PubMed
PubMed Central
Google Scholar
Rao D, Kimler BF, Nothnick WB, Davis MK, Fan F, Tawfik O. Transgelin: A potentially useful diagnostic marker differentially expressed in triple-negative and non–triple-negative breast cancers. Hum Pathol. 2015;46(6):876–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sayar N, Karahan G, Konu O, Bozkurt B, Bozdogan O, Yulug IG. Transgelin gene is frequently downregulated by promoter DNA hypermethylation in breast cancer. Clin Epigenetics. 2015;7(1):1–16.
Article
CAS
Google Scholar
Yang L, Hong Q, Xu SG, Kuang XY, Di GH, Liu GY, Wu J, Shao ZM, Yu SJ. Downregulation of transgelin 2 promotes breast cancer metastasis by activating the reactive oxygen species/nuclear factor-κB signaling pathway. Mol Med Rep. 2019;20(5):4045–258.
CAS
PubMed
PubMed Central
Google Scholar
Beck BH, Welch DR. The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer. 2010;46(7):1283–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian J, Al-Odaini AA, Wang Y, Korah J, Dai M, Xiao L, Ali S, Lebrun J-J. KiSS1 gene as a novel mediator of TGFβ-mediated cell invasion in triple negative breast cancer. Cell Signal. 2018;42:1–10.
Article
CAS
PubMed
Google Scholar
Martin TA, Watkins G, Jiang WG. KiSS-1 expression in human breast cancer. Clin Exp Metas. 2005;22(6):503–11.
Article
CAS
Google Scholar