Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol. 1993;11:403–50.
Article
CAS
PubMed
Google Scholar
Heemels MT, Ploegh H. Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem. 1995;64:463–91.
Article
CAS
PubMed
Google Scholar
Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol. 2008;8(8):607–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saric T, Chang SC, Hattori A, York IA, Markant S, Rock KL, et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol. 2002;3(12):1169–76.
Article
CAS
PubMed
Google Scholar
Pepelyayeva Y, Amalfitano A. The role of ERAP1 in autoinflammation and autoimmunity. Hum Immunol. 2019;80(5):302–9.
Article
CAS
PubMed
Google Scholar
Reeves E, James E. The role of polymorphic ERAP1 in autoinflammatory disease. Biosci Rep. 2018;38(4):BSR20171503.
Article
PubMed
PubMed Central
Google Scholar
Lorente E, Barriga A, Johnstone C, Mir C, Jimenez M, Lopez D. Concerted in vitro trimming of viral HLA-B27-restricted ligands by human ERAP1 and ERAP2 aminopeptidases. PLoS One. 2013;8(11):e79596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cifaldi L, Romania P, Lorenzi S, Locatelli F, Fruci D. Role of endoplasmic reticulum aminopeptidases in health and disease: from infection to cancer. Int J Mol Sci. 2012;13(7):8338–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Compagnone M, Cifaldi L, Fruci D. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum Immunol. 2019;80(5):318–24.
Article
CAS
PubMed
Google Scholar
Stoehr CG, Buettner-Herold M, Kamphausen E, Bertz S, Hartmann A, Seliger B. Comparative expression profiling for human endoplasmic reticulum-resident aminopeptidases 1 and 2 in normal kidney versus distinct renal cell carcinoma subtypes. Int J Clin Exp Pathol. 2013;6(6):998–1008.
PubMed
PubMed Central
Google Scholar
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
Article
PubMed
Google Scholar
Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.
Article
CAS
PubMed
Google Scholar
Munoz N. Human papillomavirus and cancer: the epidemiological evidence. J Clin Virol. 2000;19(1–2):1–5.
Article
CAS
PubMed
Google Scholar
Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000;343(1):37–49.
Article
CAS
PubMed
Google Scholar
Paaso A, Jaakola A, Syrjänen S, Louvanto K. From HPV infection to lesion progression: the role of HLA alleles and host immunity. Acta Cytol. 2019;63(2):148–58.
Article
CAS
PubMed
Google Scholar
Mehta AM, Michelle O, Sandra K-U, Jan FG, S. JE. Molecular backgrounds of ERAP1 Downregulation in cervical carcinoma. Anal Cell Pathol. 2015;2015:367837.
Mirco C, Loredana C, Doriana F. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum Immunolo. 2019;80(5):318–24.
Stratikos E, Stamogiannos A, Zervoudi E, Fruci D. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Front Oncol. 2014;4:363.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Li H, Wang J, Gao X. Association between ERAP1 gene polymorphisms and ankylosing spondylitis susceptibility in Han population. Int J Clin Exp Pathol. 2015;8(9):11641–6.
CAS
PubMed
PubMed Central
Google Scholar
Hill LD, Hilliard DD, York TP, Srinivas S, Kusanovic JP, Gomez R, et al. Fetal ERAP2 variation is associated with preeclampsia in African Americans in a case-control study. BMC Med Gene. 2011;12:64.
Article
CAS
Google Scholar
Cagliani R, Riva S, Biasin M, Fumagalli M, Pozzoli U, Lo Caputo S, et al. Genetic diversity at endoplasmic reticulum aminopeptidases is maintained by balancing selection and is associated with natural resistance to HIV-1 infection. Hum Mol Genet. 2010;19(23):4705–14.
Article
CAS
PubMed
Google Scholar
Liu S, Cao D, Shen Y, Li Y, Li Y, Shi L, et al. The ERAP gene is associated with HCV chronic infection in a Chinese Han population. Hum Immunol. 2017;78(11–12):731–8.
Article
CAS
PubMed
Google Scholar
Yao Y, Wisniewski A, Ma Q, Kowal A, Porebska I, Pawelczyk K, et al. Single nucleotide polymorphisms of the ERAP1 gene and Risk of NSCLC: a comparison of genetically distant populations, Chinese and Caucasian. Arch Immunol Ther Exp. 2016;64(Suppl 1):117–22.
Article
CAS
Google Scholar
Mehta AM, Jordanova ES, van Wezel T, Uh HW, Corver WE, Kwappenberg KM, et al. Genetic variation of antigen processing machinery components and association with cervical carcinoma. Genes Chromosomes Cancer. 2007;46(6):577–86.
Article
CAS
PubMed
Google Scholar
Mehta AM, Jordanova ES, Corver WE, van Wezel T, Uh HW, Kenter GG, et al. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes, chromosomes & cancer. 2009;48(5):410–8.
Article
CAS
Google Scholar
Mehta AM, Spaans VM, Mahendra NB, Osse EM, Vet JN, Purwoto G, et al. Differences in genetic variation in antigen-processing machinery components and association with cervical carcinoma risk in two Indonesian populations. Immunogenetics. 2015;67(5–6):267–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birtley JR, Saridakis E, Stratikos E, Mavridis IM. The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing. Biochemistry. 2012;51(1):286–95.
Article
CAS
PubMed
Google Scholar
Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. Structural basis for antigenic peptide recognition and processing by endoplasmic reticulum (ER) Aminopeptidase 2. J Biol Chem. 2015;290(43):26021–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamogiannos A, Koumantou D, Papakyriakou A, Stratikos E. Effects of polymorphic variation on the mechanism of Endoplasmic Reticulum Aminopeptidase 1. Mol Immunol. 2015;67(2 Pt B):426–35.
Article
CAS
PubMed
Google Scholar
Evnouchidou I, Kamal RP, Seregin SS, Goto Y, Tsujimoto M, Hattori A, et al. Cutting Edge: Coding single nucleotide polymorphisms of endoplasmic reticulum aminopeptidase 1 can affect antigenic peptide generation in vitro by influencing basic enzymatic properties of the enzyme. J Immunol. 2011;186(4):1909–13.
Article
CAS
PubMed
Google Scholar
Evnouchidou I, Birtley J, Seregin S, Papakyriakou A, Zervoudi E, Samiotaki M, et al. A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing. J Immunol. 2012;189(5):2383–92.
Article
CAS
PubMed
Google Scholar
Zervoudi E, Papakyriakou A, Georgiadou D, Evnouchidou I, Gajda A, Poreba M, et al. Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides. Biochem J. 2011;435(2):411–20.
Article
CAS
PubMed
Google Scholar
Hattori A, Tsujimoto M. Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology. J Biochem. 2013;154(3):219–28.
Article
CAS
PubMed
Google Scholar
Nguyen TT, Chang SC, Evnouchidou I, York IA, Zikos C, Rock KL, et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat Struct Mol Biol. 2011;18(5):604–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 2009;19(4):519–23.
Article
CAS
PubMed
Google Scholar
Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8.
Article
CAS
PubMed
Google Scholar
Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928–9.
Article
CAS
PubMed
Google Scholar
Dupont WD, Plummer WD Jr. Power and sample size calculations. A review and computer program. Control Clin Trials. 1990;11(2):116–28.
Article
CAS
PubMed
Google Scholar
Falk K, Rotzschke O. The final cut: how ERAP1 trims MHC ligands to size. Nat Immunol. 2002;3(12):1121–2.
Article
CAS
PubMed
Google Scholar
York IA, Chang SC, Saric T, Keys JA, Favreau JM, Goldberg AL, et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat Immunol. 2002;3(12):1177–84.
Article
CAS
PubMed
Google Scholar
Chang SC, Momburg F, Bhutani N, Goldberg AL. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism. Proc Natl Acad Sci U S A. 2005;102(47):17107–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, Lepelletier Y, et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol. 2005;6(7):689–97.
Article
CAS
PubMed
Google Scholar
Guasp P, Alvarez-Navarro C, Gomez-Molina P, Martin-Esteban A, Marcilla M, Barnea E, et al. The Peptidome of Behcet's Disease-Associated HLA-B*51:01 Includes Two Subpeptidomes Differentially Shaped by Endoplasmic Reticulum Aminopeptidase 1. Arthritis Rheumatol. 2016;68(2):505–15.
Article
CAS
PubMed
Google Scholar
Mehta AM, Jordanova ES, Kenter GG, Ferrone S, Fleuren GJ. Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunol Immunother. 2008;57(2):197–206.
Article
CAS
PubMed
Google Scholar
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
Article
PubMed
CAS
Google Scholar
Steinbach A, Winter J, Reuschenbach M, Blatnik R, Klevenz A, Bertrand M, et al. ERAP1 overexpression in HPV-induced malignancies: a possible novel immune evasion mechanism. Oncoimmunology. 2017;6(7):e1336594.
Article
PubMed
PubMed Central
Google Scholar
Costantino F, Talpin A, Evnouchidou I, Kadi A, Leboime A, Said-Nahal R, et al. ERAP1 Gene Expression Is Influenced by Nonsynonymous Polymorphisms Associated With Predisposition to Spondyloarthritis. Arthritis Rheumatology. 2015;67(6):1525–34.
Article
CAS
PubMed
Google Scholar
Hanson AL, Cuddihy T, Haynes K, Loo D, Morton CJ, Oppermann U, et al. Genetic Variants in ERAP1 and ERAP2 Associated With Immune-Mediated Diseases Influence Protein Expression and the Isoform Profile. Arthritis Rheumatology. 2018;70(2):255–65.
Article
CAS
PubMed
Google Scholar
Alvarez-Navarro C. Lopez de Castro JA. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol. 2014;57(1):12–21.
Article
CAS
PubMed
Google Scholar
Andres AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B, et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 2010;6(10):e1001157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vanhille DL, Hill LD, Hilliard DD, Lee ED, Teves ME, Srinivas S, et al. A novel ERAP2 haplotype structure in a Chilean population: implications for ERAP2 protein expression and preeclampsia risk. Mol Genet Genom Med. 2013;1(2):98–107.
Article
CAS
Google Scholar
Goto Y, Hattori A, Ishii Y, Tsujimoto M. Reduced activity of the hypertension-associated Lys528Arg mutant of human adipocyte-derived leucine aminopeptidase (A-LAP)/ER-aminopeptidase-1. FEBS Lett. 2006;580(7):1833–8.
Article
CAS
PubMed
Google Scholar
Kochan G, Krojer T, Harvey D, Fischer R, Chen L, Vollmar M, et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc Natl Acad Sci U S A. 2011;108(19):7745–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen D, Gyllensten U. Lessons and implications from association studies and post-GWAS analyses of cervical cancer. Trends in genetics : TIG. 2015;31(1):41–54.
Article
CAS
PubMed
Google Scholar
Hildesheim A, Wang SS. Host and viral genetics and risk of cervical cancer: a review. Virus Res. 2002;89(2):229–40.
Article
CAS
PubMed
Google Scholar
Martínez-Nava GA, Fernández-Niño JA, Madrid-Marina V, Torres-Poveda K. Cervical Cancer Genetic Susceptibility: A Systematic Review and Meta-Analyses of Recent Evidence. PloS one. 2016;11(7):e0157344.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weng S-L, Wu W-J, Hsiao Y-H, Yang S-F, Hsu C-F, Wang P-H. Significant association of long non-coding RNAs HOTAIR genetic polymorphisms with cancer recurrence and patient survival in patients with uterine cervical cancer. Int J Med Sci. 2018;15(12):1312–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han S-S, Kim JW, Lee SH, Kim DH, Park N-H, Song Y-S, et al. ERCC1 C19007T polymorphism and the risk and invasiveness of cervical cancer in Korean women. Asia Pac J Clin Oncol. 2012;8(4):e63–e7.
Article
PubMed
Google Scholar
Nogueira A, Catarino R, Faustino I, Nogueira-Silva C, Figueiredo T, Lombo L, et al. Role of the RAD51 G172T polymorphism in the clinical outcome of cervical cancer patients under concomitant chemoradiotherapy. Gene. 2012;504(2):279–83.
Article
CAS
PubMed
Google Scholar
Shi T-Y, Cheng X, Yu K-D, Sun M-H, Shao Z-M, Wang M-Y, et al. Functional variants in TNFAIP8 associated with cervical cancer susceptibility and clinical outcomes. Carcinogenesis. 2013;34(4):770–8.
Article
CAS
PubMed
Google Scholar