Ross JS, Fletcher JA, Linette GP, et al. The her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist. 2003;8(4):307–25.
Article
CAS
PubMed
Google Scholar
Pegram MD, Konecny G, Slamon DJ. The molecular and cellular biology of HER2/neu gene amplification/over-expression and the clinical development of Herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res. 2000;103:57–75.
Article
CAS
PubMed
Google Scholar
Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.
Article
CAS
PubMed
Google Scholar
Perez EA, Romond EH, Suman VJ, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29(25):3366–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gianni L, Dafni U, Gelber RD, et al. Herceptin adjuvant (HERA) trial study team. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 2011;12(3):236–44.
Article
CAS
PubMed
Google Scholar
Dent S, Oyan B, Honig A, et al. HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials. Cancer Treat Rev. 2013;39(6):622–31.
Article
CAS
PubMed
Google Scholar
Amiri-Kordestani L, Wedam S, Zhang L, et al. First FDA approval of neoadjuvant therapy for breast cancer: pertuzumab for the treatment of patients with HER2-positive breast cancer. Clin Cancer Res. 2014;20(21):5359–64.
Article
CAS
PubMed
Google Scholar
Hicks DG, Kulkarni S. HER2+ breast cancer: review of biologic relevance and optimal use of diagnostic tools. Am J Clin Pathol. 2008;129(2):263–73.
Article
PubMed
Google Scholar
Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.
Article
CAS
PubMed
Google Scholar
Hicks DG, Kulkarni S. Trastuzumab as adjuvant therapy for early breast cancer: the importance of accurate human epidermal growth factor receptor 2 testing. Arch Pathol Lab Med. 2008;132(6):1008–15.
CAS
PubMed
Google Scholar
Baselga J, Cortés J, Kim SB, et al. CLEOPATRA study group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19.
Article
CAS
PubMed
Google Scholar
Verma S, Miles D, Gianni L, et al. EMILIA study group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hurvitz SA, Dirix L, Kocsis J, et al. Phase II randomized study of Trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2013;31(9):1157–63.
Article
CAS
PubMed
Google Scholar
Hicks DG, Whitney-Miller C. HER2 testing in gastric and gastroesophageal junction cancers: a new therapeutic target and diagnostic challenge. Appl Immunohistochem Mol Morphol. 2011;19(6):506–8.
Article
PubMed
Google Scholar
Wolff AC, Hammond ME, Hicks DG, et al. American Society of Clinical Oncology; College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/ College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.
Article
PubMed
Google Scholar
Scaltriti M, Nuciforo P, Bradbury I, et al. High HER2 expression correlates with response to the combination of lapatinib and trastuzumab. Clin Cancer Res. 2015;21(3):569–76.
Article
CAS
PubMed
Google Scholar
Goldstein NS, Hewitt SM, Taylor CR, et al. Members of ad-hoc committee on immunohistochemistry standardization. Recommendations for improved standardization of immunohistochemistry. Appl Immunohistochem Mol Morphol. 2007;15(2):124–33.
Article
CAS
PubMed
Google Scholar
Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum Pathol. 2005;36(3):250–61.
Article
CAS
PubMed
Google Scholar
Harigopal M, Barlow WE, Tedeschi G, et al. Multiplexed assessment of the southwest oncology group-directed intergroup breast Cancer trial S9313 by AQUA shows that both high and low levels of HER2 are associated with poor outcome. Am J Pathol. 2010;176(4):1639–47.
Article
PubMed
PubMed Central
Google Scholar
Huang W, Reinholz M, Weidler J, et al. Comparison of central HER2 testing with quantitative total HER2 expression and HER2 homodimer measurements using a novel proximity-based assay. Am J Clin Pathol. 2010;134(2):303–11.
Article
CAS
PubMed
Google Scholar
Larson JS, Goodman LJ, Tan Y, et al. Analytical validation of a highly quantitative, sensitive, accurate, and reproducible assay (HERmark) for the measurement of HER2 Total protein and HER2 homodimers in FFPE breast Cancer tumor specimens. Patholog Res Int. 2010;814176.
Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51(12):2415–8.
Article
CAS
PubMed
Google Scholar
Van Weemen BK, Schuurs AH. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15(3):232–6.
Article
PubMed
Google Scholar
Opstal-van Winden AW, Vermeulen RC, Peeters PH, et al. Early diagnostic protein biomarkers for breast cancer: how far have we come? Breast Cancer Res Treat. 2012;134(1):1–12.
Article
CAS
PubMed
Google Scholar
Lavabre-Bertrand T, Janossy G, Ivory K, et al. Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression. Cytometry. 1994;18(4):209–17.
Article
CAS
PubMed
Google Scholar
Gonda K, Watanabe M, Tada H, et al. Quantitative diagnostic imaging of cancer tissues by using phosphor-integrated dots with ultra-high brightness. Sci Rep. 2017;7(1):7509.
Article
PubMed
PubMed Central
Google Scholar
Jorgensen JT, Møller S, Rasmussen BB, et al. High concordance between two companion diagnostics tests: a concordance study between the HercepTest and the HER2 ISH pharmDx kit. Am J Clin Pathol. 2011;136(1):145–51.
Article
PubMed
Google Scholar
Symmans WF, Peintinger F, Hatzis C, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–22.
Article
PubMed
Google Scholar
Symmans WF, Wei C, Gould R, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual Cancer burden and breast Cancer subtype. J Clin Oncol. 2017;35(10):1049–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen K, Krusenstjerna-Hafstrøm R, Lohse J, et al. A novel quantitative immunohistochemistry method for precise protein measurements directly in formalin-fixed, paraffin-embedded specimens: analytical performance measuring HER2. Mod Pathol. 2017;30(2):180–93.
Article
CAS
PubMed
Google Scholar
Downs-Kelly E, Yoder BJ, Stoler M, et al. The influence of polysomy 17 on HER2 gene and protein expression in adenocarcinoma of the breast: a fluorescent in situ hybridization, immunohistochemical, and isotopic mRNA in situ hybridization study. Am J Surg Pathol. 2005;29(9):1221–7.
Article
PubMed
Google Scholar
Pauletti G, Godolphin W, Press MF, et al. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene. 1996;13(1):63–72.
CAS
PubMed
Google Scholar
Lipton A, Köstler WJ, Leitzel K, et al. Trastuzumab response biomarker group. Quantitative HER2 protein levels predict outcome in fluorescence in situ hybridization-positive patients with metastatic breast cancer treated with trastuzumab. Cancer. 2010;116(22):5168–78.
Article
CAS
PubMed
Google Scholar
Benz CC, O'Hagan RC, Richter B, et al. HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer. Oncogene. 1997;15(13):1513–25.
Article
CAS
PubMed
Google Scholar
Wang SC, Hung MC. HER2 overexpression and cancer targeting. Semin Oncol. 2001;28(5 Suppl 16):115–24.
Article
CAS
PubMed
Google Scholar
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.
Article
PubMed
Google Scholar
Miyashita M, Gonda K, Tada H, et al. Quantitative diagnosis of HER2 protein expressing breast cancer by single-particle quantum dot imaging. Cancer Med. 2016;5(10):2813–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuciforo P, Thyparambil S, Aura C, et al. High HER2 protein levels correlate with increased survival in breast cancer patients treated with anti-HER2 therapy. Mol Oncol. 2016;10(1):138–47.
Article
CAS
PubMed
Google Scholar
Cheng H, Bai Y, Sikov W, et al. Quantitative measurements of HER2 and phospho-HER2 expression: correlation with pathologic response to neoadjuvant chemotherapy and trastuzumab. BMC Cancer. 2014;14:326.
Article
PubMed
PubMed Central
Google Scholar
Bianchini G, Kiermaier A, Bianchi GV, et al. Biomarker analysis of the NeoSphere study: pertuzumab, trastuzumab, and docetaxel versus trastuzumab plus docetaxel, pertuzumab plus trastuzumab, or pertuzumab plus docetaxel for the neoadjuvant treatment of HER2-positive breast cancer. Breast Cancer Res. 2017;19(1):16.
Article
PubMed
PubMed Central
Google Scholar
Singer CF, Tan YY, Fitzal F, et al. Austrian Breast and Colorectal Cancer Study Group. Pathological Complete Response to Neoadjuvant Trastuzumab Is Dependent on HER2/CEP17 Ratio in HER2-Amplified Early Breast Cancer. Clin Cancer Res. 2017.
Solinas C, Ceppi M, Lambertini M, et al. Tumor-infiltrating lymphocytes in patients with HER2-positive breast cancer treated with neoadjuvant chemotherapy plus trastuzumab, lapatinib or their combination: a meta-analysis of randomized controlled trials. Cancer Treat Rev. 2017;57:8–15.
Article
CAS
PubMed
Google Scholar
Lesurf R, Griffith OL, Griffith M, et al. Genomic characterization of HER2-positive breast cancer and response to neoadjuvant trastuzumab and chemotherapy-results from the ACOSOG Z1041 (Alliance) trial. Ann Oncol. 2017;28(5):1070–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yardley DA, Kaufman PA, Huang W, et al. Quantitative measurement of HER2 expression in breast cancers: comparison with 'real-world' routine HER2 testing in a multicenter collaborative biomarker study and correlation with overall survival. Breast Cancer Res. 2015;17:41.
Article
PubMed
PubMed Central
Google Scholar