Arbyn M, Castellsagué X, de Sanjosé S, Bruni L, Saraiya M, Bray F, et al. Worldwide burden of cervical cancer in 2008. Ann Oncol. 2011;22(12):2675–86.
Article
CAS
PubMed
Google Scholar
INEGI. Estadísticas de mortalidad. Cubos dinámicos y CONAPO 2012. Proyecciones de la población de México 2012–2050. 2012.
Google Scholar
Insinga RP, Perez G, Wheeler CM, Koutsky LA, Garland SM, Leodolter S, et al. Incident cervical HPV infections in young women: transition probabilities for CIN and infection clearance. Cancer Epidemiol Biomarkers Prev. 2011;20:287–96.
Article
PubMed
Google Scholar
Conesa-Zamora P. Immune responses against virus and tumor in cervical carcinogenesis: treatment strategies for avoiding the HPV-induced immune escape. Gynecol Oncol. 2013;131(2):480–8.
Article
CAS
PubMed
Google Scholar
Bermúdez-Morales VH, Gutierrez LX, Alcocer-Gonzalez JM, Burguete A, Madrid-Marina V. Correlation between IL-10 gene expression and HPV infection in cervical cancer: a mechanism for immune response escape. Cancer Invest. 2008;26(10):1037–43.
Article
PubMed
Google Scholar
Torres-Poveda K, Burguete-García AI, Cruz M, Martínez-Nava GA, Bahena-Román M, Ortíz-Flores E, et al. The SNP at −592 of human IL-10 gene is associated with serum IL-10 levels and increased risk for human papillomavirus cervical lesion development. Infect Agent Cancer. 2012;7(1):32–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basavaraju U, Shebl FM, Palmer AJ, Berry S, Hold GL, El-Omar EM, et al. Cytokine gene polymorphisms, cytokine levels and the risk of colorectal neoplasia in a screened population of Northeast Scotland. Eur J Cancer Prev. 2015;24(4):296–304.
Article
CAS
PubMed
Google Scholar
Zhang X, Zhang L, Tian C, Yang L, Wang Z. Genetic variants and risk of cervical cancer: epidemiological evidence, meta-analysis and research review. BJOG. 2014;121(6):664–74.
Article
CAS
PubMed
Google Scholar
Muñoz N, Castellsagué X, de González AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24 Suppl 3:S3/1–10.
Google Scholar
Louie KS, de Sanjose S, Diaz M, Castellsagué X, Herrero R, Meijer CJ, et al. Early age at first sexual intercourse and early pregnancy are risk factors for cervical cancer in developing countries. Br J Cancer. 2009;100(7):1191–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magnusson PK, Lichtenstein P, Gyllensten UB. Heritability of cervical tumours. Int J Cancer. 2000;88(5):698–701.
Article
CAS
PubMed
Google Scholar
Alcocer-González JM, Berumen J, Taméz-Guerra R, Bermúdez-Morales V, Peralta-Zaragoza O, Hernández-Pando R, et al. In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol. 2006;19(3):481–91.
Article
PubMed
Google Scholar
Díaz-Benítez CE, Navarro-Fuentes KR, Flores-Sosa JA, Juárez-Díaz J, Uribe-Salas FJ, Román-Basaure E, et al. CD3zeta expression and T cell proliferation are inhibited by TGF-beta1 and IL-10 in cervical cancer patients. J Clin Immunol. 2009;29(4):532–44.
Article
PubMed
Google Scholar
Piersma SJ. Immunosuppressive tumor microenvironment in cervical cancer patients. Cancer Microenviron. 2011;4(3):361–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres-Poveda K, Bahena-Román M, Madrid-González C, Burguete-García AI, Bermúdez-Morales VH, Peralta-Zaragoza O, et al. Role of IL-10 and TGF-β1 in local immunosuppression in HPV-associated cervical neoplasia. World J Clin Oncol. 2014;5(4):753–63.
Article
PubMed
PubMed Central
Google Scholar
Shamran HA, Hamza SJ, Yaseen NY, Al-Juboory AA, Taub DD, Price RL, et al. Impact of single nucleotide polymorphism in IL-4, IL-4R genes and systemic concentration of IL-4 on the incidence of glioma in Iraqi patients. Int J Med Sci. 2014;11(11):1147–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai MH, Chen WC, Tsai CH, Hang LW, Tsai FJ. Interleukin-4 gene, but not the interleukin-1 beta gene polymorphism, is associated with oral cancer. J Clin Lab Anal. 2005;19(3):93–8.
Article
CAS
PubMed
Google Scholar
Zheng Z, Li X, Li Z, Ma XC. IL-4 -590C/T polymorphism and susceptibility to liver disease: a meta-analysis and meta-regression. DNA Cell Biol. 2013;32(8):443–50.
Article
CAS
PubMed
Google Scholar
Lim WY, Chen Y, Ali SM, Chuah KL, Eng P, Leong SS, et al. Polymorphisms in inflammatory pathway genes, host factors and lung cancer risk in Chinese female never-smokers. Carcinogenesis. 2011;32(4):522–9.
Article
CAS
PubMed
Google Scholar
Castro FA, Haimila K, Sareneva I, Schmitt M, Lorenzo J, Kunkel N, et al. Association of HLA-DRB1, interleukin-6 and cyclin D1 polymorphisms with cervical cancer in the Swedish population—A candidate gene approach. Int J Cancer. 2009;125(8):1851–8.
Article
CAS
PubMed
Google Scholar
Veerapaneni P, Kirma N, Nair HB, Hammes LS, Hall KL, Tekmal RR. Elevated aromatase expression correlates with cervical carcinoma progression. Gynecol Oncol. 2009;114:496–500.
Article
CAS
PubMed
Google Scholar
Wei LH, Kuo ML, Chen CA, Cheng WF, Cheng SP, Hsieh FJ, et al. Interleukin-6 in cervical cancer: the relationship with vascular endothelial growth factor. Gynecol Oncol. 2001;82:49–56.
Article
CAS
PubMed
Google Scholar
Shi TY, Zhu ML, He J, Wang MY, Li QX, Zhou XY, et al. Polymorphisms of the Interleukin 6 gene contribute to cervical cancer susceptibility in Eastern Chinese women. Hum Genet. 2013;132:301–12.
Article
CAS
PubMed
Google Scholar
Grimm C, Watrowski R, Baumühlner K, Natter C, Tong D, Wolf A, et al. Genetic variations of interleukin-1 and −6 genes and risk of cervical intraepithelial neoplasia. Gynecol Oncol. 2011;121(3):537–41.
Article
CAS
PubMed
Google Scholar
Bennermo M, Held C, Stemme S, Ericsson CG, Silveira A, Green F, et al. Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin Chem. 2004;50(11):2136–40.
Article
CAS
PubMed
Google Scholar
Kong SY, Lee HL, Eom HS, Park WS, Yun T, Kim HJ, et al. Reference intervals for circulating angiogenic cytokines. Clin Chem Lab Med. 2008;46(4):545–50.
Article
CAS
PubMed
Google Scholar
Kingo K, Rätsep R, Kõks S, Karelson M, Silm H, Vasar E, et al. Influence of genetic polymorphisms on interleukin-10 mRNA expression and psoriasis susceptibility. J Dermatol Sci. 2005;37:111–3.
Article
CAS
PubMed
Google Scholar
Ni J, Ye Y, Teng F, Wu Q. Interleukin 10 polymorphisms and cervical cancer risk: a meta-analysis. Int J Gynecol Cancer. 2013;23(1):126–33.
Article
PubMed
Google Scholar
Steinke JW, Barekzi E, Hagman J, Borish L. Functional Analysis of −571 IL-10 promoter polymorphism reveals a repressor element controlled by Sp1. J Immunol. 2004;173:3215–22.
Article
CAS
PubMed
Google Scholar
Stanczuk GA, Sibanda EN, Perrey C, Chirara M, Pravica V, Hutchinson IV, et al. Cancer of the uterine cervix may be significantly associated with a gene polymorphism coding for increased IL-10 production. Int J Cancer. 2001;94(6):792–4.
Article
CAS
PubMed
Google Scholar
Ding Q, Shi Y, Fan B, Fan Z, Ding L, Li F, et al. The Interleukin-10 Promoter Polymorphism rs1800872 (−592C.A), Contributes to Cancer Susceptibility: Meta-Analysis of 16 785 Cases and 19 713 Controls. PLoS ONE. 2013;8(2):e57246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh H, Jain M, Sachan R, Mittal B. Association of TNFA (−308G > A) and IL-10 (−819C > T) promoter polymorphisms with risk of cervical cancer. Int J Gynecol Cancer. 2009;19(7):1190–4.
Article
PubMed
Google Scholar
Yu Z, Liu Q, Huang C, Wu M, Li G. The interleukin 10–819C/T polymorphism and cancer risk: a HuGE review and meta-analysis of 73 studies including 15,942 cases and 22,336 controls. OMICS. 2013;17(4):200–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue H, Lin B, An J, Zhu Y, Huang G. Interleukin-10-819 promoter polymorphism in association with gastric cancer risk. BMC Cancer. 2012;12:102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Ding Q, Shi Y, Cao Q, Qin C, Zhu J, et al. The interleukin-10-1082 promoter polymorphism and cancer risk: a meta-analysis. Mutagenesis. 2012;27(3):305–12.
Article
CAS
PubMed
Google Scholar
Rees L, Wood N, Gillespie K, Lai K, Gaston K, Mathieson P. The interleukin-10-1082 G/A polymorphism: allele frequency in different populations and functional significance. Cell Mol Life Sci. 2002;59(3):560–9.
Article
CAS
PubMed
Google Scholar
Matsumoto K, Oki A, Satoh T, Okada S, Minaguchi T, Onuki M, et al. Interleukin-10–1082 gene polymorphism and susceptibility to cervical cancer among Japanese women. Jpn J Clin Oncol. 2010;40:1113–6.
Article
PubMed
Google Scholar
Poli F, Nocco A, Berra S, Scalamogna M, Taioli E, Longhi E, et al. Allele frequencies of polymorphisms of TNFA, IL-6, IL-10 and IFNG in an Italian Caucasian population. Eur J Immunogenet. 2002;29:237–40.
Article
CAS
PubMed
Google Scholar
Barbisan G, Pérez LO, Contreras A, Golijow CD. TNF-α and IL-10 promoter polymorphisms, HPV infection, and cervical cancer risk. Tumor Biol. 2012;33:1549–56.
Article
CAS
Google Scholar
Shah R, Hurley CK, Posch PE. A molecular mechanism for the differential regulation of TGF-beta1 expression due to the common SNP -509C-T (c. -1347C > T). Hum Genet. 2006;120(4):461–9.
Article
CAS
PubMed
Google Scholar
Singh H, Jain M, Mittal B. Role of TGF-beta1 (−509C > T) promoter polymorphism in susceptibility to cervical cancer. Oncol Res. 2009;18(1):41–5.
Article
CAS
PubMed
Google Scholar
Ramos-Flores C, Romero-Gutiérrez T, Delgado-Enciso I, Maldonado GE, Plascencia VM, Vazquez-Vuelvas OF, et al. Polymorphisms in the genes related to angiogenesis are associated with uterine cervical cancer. Int J Gynecol Cancer. 2013;23(7):1198–204.
Article
PubMed
Google Scholar
Liu L, Yang X, Chen X, Kan T, Shen Y, Chen Z, et al. Association between TNF-α polymorphisms and cervical cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:2683–8.
Article
CAS
PubMed
Google Scholar
Ding B, Fu S, Wang M, Yue C, Wang W, Zhou D, et al. Tumor necrosis factor α -308 G > A polymorphisms and cervical cancer risk: a meta-analysis. Int J Gynecol Cancer. 2012;22(2):213–9.
Article
PubMed
Google Scholar
Pan F, Tian J, Ji CS, He YF, Han XH, Wang Y, et al. Association of TNF-α-308 and −238 Polymorphisms with Risk of Cervical Cancer: A Meta-analysis. Asian Pac J Cancer Prev. 2012;13(11):5777–83.
Article
PubMed
Google Scholar
Jin Y. Association of Single Nucleotide Polymorphisms in Tumor Necrosis Factor-Alpha with Cervical Cancer Susceptibility. Cell Biochem Biophys. 2015;71(1):77–84.
Article
CAS
PubMed
Google Scholar
Zhang H-L, Zhang YJ. A systemic assessment of the association between tumor necrosis factor alpha 308G/A polymorphism and risk of cervical cancer. Tumor Biol. 2013;34(3):1659–65.
Article
CAS
Google Scholar
Stanczuk GA, Sibanda EN, Tswana SA, Bergstrom S. Polymorphism at the −308- promoter position of the tumor necrosis factor-alpha (TNF-alpha) gene and cervical cancer. Int J Gynecol Cancer. 2003;13:14853.
Article
Google Scholar
Govan VA, Constant D, Hoffman M, Williamson AL. The allelic distribution of −308 Tumor Necrosis Factor-alpha gene polymorphism in South african women with cervical cancer and control women. BMC Cancer. 2006;6:24.
Article
PubMed
PubMed Central
Google Scholar
Ivansson EL, Magnusson JJ, Magnusson PK, Erlich HA, Gyllensten UB. MHC loci affecting cervical cancer risk: distinguishing the effects of HLA-DQB1 and non-HLA genes TNF, LTA, TAP1 and TAP2. Genes Immun. 2008;9(7):613–23.
Article
CAS
PubMed
Google Scholar
Calhoun ES, McGovern RM, Janney CA, Cerhan JR, Iturria SJ, Smith DI, et al. Host genetic polymorphism analysis in cervical cancer. Clin Chem. 2002;48(8):1218–24.
CAS
PubMed
Google Scholar
Baena A, Leung JY, Sullivan AD, Landires I, Vasquez-Luna N, Quiñones-Berrocal J, et al. TNF-alpha promoter single nucleotide polymorphisms are markers of human ancestry. Genes Immun. 2002;3:482–7.
Article
CAS
PubMed
Google Scholar
Kim K, Cho SK, Sestak A, Namjou B, Kang C, Bae SC. Interferon-gamma gene polymorphisms associated with susceptibility to systemic lupus erythematosus. Ann Rheum Dis. 2010;69(6):1247–50.
Article
CAS
PubMed
Google Scholar
Li CJ, Dai Y, Fu YJ, Tian JM, Li JL, Lu HJ, et al. Correlations of IFN-γ genetic polymorphisms with susceptibility to breast cancer: a meta-analysis. Tumour Biol. 2014;35(7):6867–77.
Article
CAS
PubMed
Google Scholar
Song SH, Lee JK, Lee NW, Saw HS, Kang JS, Lee KW. Interferon-gamma (IFN-gamma): a possible prognostic marker for clearance of high-risk human papillomavirus (HPV). Gynecol Oncol. 2008;108(3):543–8.
Article
CAS
PubMed
Google Scholar
Lages EL, Belo AV, Andrade SP, Rocha MÂ, de Freitas GF, Lamaita RM, et al. Analysis of systemic inflammatory response in the carcinogenic process of uterine cervical neoplasia. Biomed Pharmacother. 2011;65(7):496–9.
Article
CAS
PubMed
Google Scholar
Ali KS, Ali HY, Jubrael JM. Concentration levels of IL-10 and TNFα cytokines in patients with human papilloma virus (HPV) DNA+ and DNA− cervical lesions. J Immunotoxicol. 2012;9(2):168–72.
Article
CAS
PubMed
Google Scholar
Chechlinska M, Kowalska M, Kaminska J. Cytokines as potential tumour markers. Expert Opin Med Diagn. 2008;2(6):691–711.
Article
CAS
PubMed
Google Scholar
Arany I, Grattendick KG, Tyring SK. Interleukin-10 induces transcription of the early promoter of human papillomavirus type 16 (HPV16) through the 5′-segment of the upstream regulatory region (URR). Antiviral Res. 2002;55(2):331–9.
Article
CAS
PubMed
Google Scholar