Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 2005, 55: 74-108. 10.3322/canjclin.55.2.74.
Article
PubMed
Google Scholar
Khong TL, Larsen H, Raatz Y, Paleolog E: Angiogenesis as a therapeutic target in arthritis: learning the lessons of the colorectal cancer experience. Angiogenesis. 2007, 10: 243-258. 10.1007/s10456-007-9081-1.
Article
CAS
PubMed
Google Scholar
Thairu N, Kiriakidis S, Dawson P, Paleolog E: Angiogenesis as a therapeutic target in arthritis in 2011: learning the lessons of the colorectal cancer experience. Angiogenesis. 2011, Epub ahead of print
Google Scholar
Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, Wykoff CC, Maher ER, Harris AL, Ratcliffe PJ, Maxwell PH: HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell. 2002, 1: 459-468. 10.1016/S1535-6108(02)00071-5.
Article
CAS
PubMed
Google Scholar
Goethals L, Debucquoy A, Perneel C, Geboes K, Ectors N, De Schutter H, Penninckx F, McBride WH, Begg AC, Haustermans KM: Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. Int J Radiat Oncol Biol Phys. 2006, 65: 246-254. 10.1016/j.ijrobp.2006.01.007.
Article
CAS
PubMed
Google Scholar
Semenza G: Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002, 64: 993-998. 10.1016/S0006-2952(02)01168-1.
Article
CAS
PubMed
Google Scholar
Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW: Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004, 36: 1-12. 10.1038/emm.2004.1.
Article
PubMed
Google Scholar
Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, et al: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001, 107: 43-54. 10.1016/S0092-8674(01)00507-4.
Article
CAS
PubMed
Google Scholar
Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG: Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA. 2002, 99: 13459-13464. 10.1073/pnas.192342099.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bracken CP, Fedele AO, Linke S, Balrak W, Lisy K, Whitelaw ML, Peet DJ: Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J Biol Chem. 2006, 281: 22575-22585. 10.1074/jbc.M600288200.
Article
CAS
PubMed
Google Scholar
Giles RH, Lolkema MP, Snijckers CM, Belderbos M, van der Groep P, Mans DA, van Beest M, van Noort M, Goldschmeding R, van Diest PJ, et al: Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene. 2006, 25: 3065-3070. 10.1038/sj.onc.1209330.
Article
CAS
PubMed
Google Scholar
Simiantonaki N, Taxeidis M, Jayasinghe C, Kurzik-Dumke U, Kirkpatrick CJ: Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression. BMC Cancer. 2008, 8: 320-10.1186/1471-2407-8-320.
Article
PubMed
PubMed Central
Google Scholar
Kuwai T, Kitadai Y, Tanaka S, Onogawa S, Matsutani N, Kaio E, Ito M, Chayama K: Expression of hypoxia-inducible factor-1alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer. 2003, 105: 176-181. 10.1002/ijc.11068.
Article
CAS
PubMed
Google Scholar
Mizukami Y, Li J, Zhang X, Zimmer MA, Iliopoulos O, Chung DC: Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res. 2004, 64: 1765-1772. 10.1158/0008-5472.CAN-03-3017.
Article
CAS
PubMed
Google Scholar
Rasheed S, Harris AL, Tekkis PP, Turley H, Silver A, McDonald PJ, Talbot IC, Glynne-Jones R, Northover JM, Guenther T: Hypoxia-inducible factor-1alpha and -2alpha are expressed in most rectal cancers but only hypoxia-inducible factor-1alpha is associated with prognosis. Br J Cancer. 2009, 100: 1666-1673. 10.1038/sj.bjc.6605026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imamura T, Kikuchi H, Herraiz MT, Park DY, Mizukami Y, Mino-Kenduson M, Lynch MP, Rueda BR, Benita Y, Xavier RJ, Chung DC: HIF-1alpha and HIF-2alpha have divergent roles in colon cancer. Int J Cancer. 2009, 124: 763-771. 10.1002/ijc.24032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshimura H, Dhar DK, Kohno H, Kubota H, Fujii T, Ueda S, Kinugasa S, Tachibana M, Nagasue N: Prognostic impact of hypoxia-inducible factors 1alpha and 2alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin Cancer Res. 2004, 10: 8554-8560. 10.1158/1078-0432.CCR-0946-03.
Article
CAS
PubMed
Google Scholar
Cleven AH, van Engeland M, Wouters BG, de Bruine AP: Stromal expression of hypoxia regulated proteins is an adverse prognostic factor in colorectal carcinomas. Cell Oncol. 2007, 29: 229-240.
CAS
PubMed
PubMed Central
Google Scholar
Lockhart AC, Berlin JD: The epidermal growth factor receptor as a target for colorectal cancer therapy. Semin Oncol. 2005, 32: 52-60. 10.1053/j.seminoncol.2004.09.036.
Article
CAS
PubMed
Google Scholar
Akagi M, Kawaguchi M, Liu W, McCarty MF, Takeda A, Fan F, Stoeltzing O, Parikh AA, Jung YD, Bucana CD, et al: Induction of neuropilin-1 and vascular endothelial growth factor by epidermal growth factor in human gastric cancer cells. Br J Cancer. 2003, 88: 796-802. 10.1038/sj.bjc.6600811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamura K, Morimoto A, Hamanaka R, Ono M, Kohno K, Uchida Y, Kuwano M: A model system for tumor angiogenesis: involvement of transforming growth factor-alpha in tube formation of human microvascular endothelial cells induced by esophageal cancer cells. Biochem Biophys Res Commun. 1992, 186: 1471-1479. 10.1016/S0006-291X(05)81572-4.
Article
CAS
PubMed
Google Scholar
Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY: Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell. 1993, 4: 121-133. 10.1091/mbc.4.1.121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP: Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res. 1999, 5: 257-265.
CAS
PubMed
Google Scholar
Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS: Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol. 1997, 151: 1523-1530.
CAS
PubMed
PubMed Central
Google Scholar
Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, De Placido S, Bianco AR, Tortora G: Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res. 2001, 7: 1459-1465.
CAS
PubMed
Google Scholar
Francoual M, Etienne-Grimaldi MC, Formento JL, Benchimol D, Bourgeon A, Chazal M, Letoublon C, Andre T, Gilly N, Delpero JR, et al: EGFR in colorectal cancer: more than a simple receptor. Ann Oncol. 2006, 17: 962-967. 10.1093/annonc/mdl037.
Article
CAS
PubMed
Google Scholar
Johnston JB, Navaratnam S, Pitz MW, Maniate JM, Wiechec E, Baust H, Gingerich J, Skliris GP, Murphy LC, Los M: Targeting the EGFR pathway for cancer therapy. Curr Med Chem. 2006, 13: 3483-3492. 10.2174/092986706779026174.
Article
CAS
PubMed
Google Scholar
Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J, Richardson G, et al: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007, 25: 1658-1664. 10.1200/JCO.2006.08.1620.
Article
CAS
PubMed
Google Scholar
Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J: p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem. 1999, 274: 32631-32637. 10.1074/jbc.274.46.32631.
Article
CAS
PubMed
Google Scholar
Shafee N, Kaluz S, Ru N, Stanbridge EJ: PI3K/Akt activity has variable cell-specific effects on expression of HIF target genes, CA9 and VEGF, in human cancer cell lines. Cancer Lett. 2009, 282: 109-115. 10.1016/j.canlet.2009.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL: HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001, 21: 3995-4004. 10.1128/MCB.21.12.3995-4004.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L: Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem. 2006, 281: 25903-25914. 10.1074/jbc.M603414200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000, 60: 1541-1545.
CAS
PubMed
Google Scholar
Denekamp J: Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev. 1990, 9: 267-282. 10.1007/BF00046365.
Article
CAS
PubMed
Google Scholar
Keese M, Magdeburg RJ, Herzog T, Hasenberg T, Offterdinger M, Pepperkok R, Sturm JW, Bastiaens PI: Imaging epidermal growth factor receptor phosphorylation in human colorectal cancer cells and human tissues. J Biol Chem. 2005, 280: 27826-27831. 10.1074/jbc.M504485200.
Article
CAS
PubMed
Google Scholar
Fogh J, Fogh JM, Orfeo T: One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977, 59: 221-226.
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Muz B, Larsen H, Madden L, Kiriakidis S, Paleolog EM: Prolyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritis. Arthritis Rheum. 2012, 64: 2856-2867. 10.1002/art.34479.
Article
CAS
PubMed
Google Scholar
Larsen H, Muz B, Khong TL, Feldmann M, Paleolog EM: Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA. Arthritis Res Ther. 2012, 14: R180-10.1186/ar3934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buzzi N, Colicheo A, Boland R, de Boland AR: MAP kinases in proliferating human colon cancer Caco-2 cells. Mol Cell Biochem. 2009, 328: 201-208. 10.1007/s11010-009-0090-9.
Article
CAS
PubMed
Google Scholar
Laprise P, Chailler P, Houde M, Beaulieu JF, Boucher MJ, Rivard N: Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J Biol Chem. 2002, 277: 8226-8234. 10.1074/jbc.M110235200.
Article
CAS
PubMed
Google Scholar
CRUK: (Cancer Research UK) Cancer Stats: Colorectal Cancer. 2006
Google Scholar
Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971, 285: 1182-1186. 10.1056/NEJM197111182852108.
Article
CAS
PubMed
Google Scholar
Caro I, Boulenc X, Rousset M, Meunier V, Bourrié M, Julian B, Joyeux H, Roques C, Berger Y, Zweibaum A, Fabre G: Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs. Int J Pharm. 1995, 116: 147-158. 10.1016/0378-5173(94)00280-I.
Article
CAS
Google Scholar
Bockmann S, Nebe B: The in vitro effects of H-89, a specific inhibitor of protein kinase A, in the human colonic carcinoma cell line Caco-2. Eur J Cancer Prev. 2003, 12: 469-478. 10.1097/00008469-200312000-00005.
Article
CAS
PubMed
Google Scholar
Wang S, Basson MD: Identification of functional domains in AKT responsible for distinct roles of AKT isoforms in pressure-stimulated cancer cell adhesion. Exp Cell Res. 2008, 314: 286-296. 10.1016/j.yexcr.2007.08.005.
Article
CAS
PubMed
Google Scholar
Liu Y, Bodmer WF: Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA. 2006, 103: 976-981. 10.1073/pnas.0510146103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brink M, de Goeij AF, Weijenberg MP, Roemen GM, Lentjes MH, Pachen MM, Smits KM, de Bruine AP, Goldbohm RA, van den Brandt PA: K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis. 2003, 24: 703-710. 10.1093/carcin/bgg009.
Article
CAS
PubMed
Google Scholar
Kikuchi H, Pino MS, Zeng M, Shirasawa S, Chung DC: Oncogenic KRAS and BRAF differentially regulate hypoxia-inducible factor-1alpha and -2alpha in colon cancer. Cancer Res. 2009, 69: 8499-8506. 10.1158/0008-5472.CAN-09-2213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A, Schernhammer ES, Hunter DJ, Giovannucci EL, Fuchs CS, Ogino S: Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer. 2010, 9: 125-10.1186/1476-4598-9-125.
Article
PubMed
PubMed Central
Google Scholar
Damstrup L, Kuwada SK, Dempsey PJ, Brown CL, Hawkey CJ, Poulsen HS, Wiley HS, Coffey RJ: Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis. Br J Cancer. 1999, 80: 1012-1019. 10.1038/sj.bjc.6690456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yonezawa M, Wada K, Tatsuguchi A, Akamatsu T, Gudis K, Seo T, Mitsui K, Nagata K, Tanaka S, Fujimori S, Sakamoto C: Heregulin-induced VEGF expression via the ErbB3 signaling pathway in colon cancer. Digestion. 2009, 80: 215-225. 10.1159/000229775.
Article
CAS
PubMed
Google Scholar
Gentile LB, Piva B, Diaz BL: Hypertonic stress induces VEGF production in human colon cancer cell line Caco-2: inhibitory role of autocrine PGE(2). PLoS One. 2011, 6: e25193-10.1371/journal.pone.0025193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bu XD, Li N, Tian XQ, Huang PL: Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue Cell. 2011, 43: 201-206. 10.1016/j.tice.2011.03.002.
Article
CAS
PubMed
Google Scholar
Dhawan P, Ahmad R, Chaturvedi R, Smith JJ, Midha R, Mittal MK, Krishnan M, Chen X, Eschrich S, Yeatman TJ, et al: Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene. 2011, 30: 3234-3247. 10.1038/onc.2011.43.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Bruine AP, de Vries JE, Dinjens WN, Moerkerk PT, van der Linden EP, Pijls MM, ten Kate J, Bosman FT: Human Caco-2 cells transfected with c-Ha-Ras as a model for endocrine differentiation in the large intestine. Differentiation. 1993, 53: 51-60. 10.1111/j.1432-0436.1993.tb00645.x.
Article
CAS
PubMed
Google Scholar
Zgouras D, Wachtershauser A, Frings D, Stein J: Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochem Biophys Res Commun. 2003, 300: 832-838. 10.1016/S0006-291X(02)02916-9.
Article
CAS
PubMed
Google Scholar
Matsuo Y, Sawai H, Ma J, Xu D, Ochi N, Yasuda A, Takahashi H, Funahashi H, Takeyama H: IL-1alpha secreted by colon cancer cells enhances angiogenesis: the relationship between IL-1alpha release and tumor cells’ potential for liver metastasis. J Surg Oncol. 2009, 99: 361-367. 10.1002/jso.21245.
Article
CAS
PubMed
Google Scholar
Franovic A, Holterman CE, Payette J, Lee S: Human cancers converge at the HIF-2alpha oncogenic axis. Proc Natl Acad Sci USA. 2009, 106: 21306-21311. 10.1073/pnas.0906432106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richard DE, Berra E, Pouyssegur J: Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem. 2000, 275: 26765-26771.
CAS
PubMed
Google Scholar
Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A: EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res. 2006, 66: 3197-3204. 10.1158/0008-5472.CAN-05-3090.
Article
CAS
PubMed
Google Scholar
Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J: MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem. 2003, 278: 14013-14019. 10.1074/jbc.M209702200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahon PC, Hirota K, Semenza GL: FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001, 15: 2675-2686. 10.1101/gad.924501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh Y, Katoh M: Comparative integromics on Angiopoietin family members. Int J Mol Med. 2006, 17: 1145-1149.
CAS
PubMed
Google Scholar
Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P, et al: Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA. 2006, 103: 18721-18726. 10.1073/pnas.0609025103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, Philippe J, Sibony M, Gasc JM, Corvol P, Germain S: Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol. 2003, 162: 1521-1528. 10.1016/S0002-9440(10)64285-X.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oike Y, Ito Y, Maekawa H, Morisada T, Kubota Y, Akao M, Urano T, Yasunaga K, Suda T: Angiopoietin-related growth factor (AGF) promotes angiogenesis. Blood. 2004, 103: 3760-3765. 10.1182/blood-2003-04-1272.
Article
CAS
PubMed
Google Scholar
Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Nagayasu T, Taguchi T: Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep. 2011, 25: 929-935.
Article
CAS
PubMed
Google Scholar
Merlos-Suarez A, Batlle E: Eph-ephrin signalling in adult tissues and cancer. Curr Opin Cell Biol. 2008, 20: 194-200. 10.1016/j.ceb.2008.01.011.
Article
CAS
PubMed
Google Scholar
Surawska H, Ma PC, Salgia R: The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004, 15: 419-433. 10.1016/j.cytogfr.2004.09.002.
Article
CAS
PubMed
Google Scholar
Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, et al: Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene. 2002, 21: 7011-7026. 10.1038/sj.onc.1205679.
Article
CAS
PubMed
Google Scholar
Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T: Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem. 2004, 50: 490-499. 10.1373/clinchem.2003.026849.
Article
CAS
PubMed
Google Scholar
Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, van de Born M, Malats N, Sancho E, Boon E, Pawson T, et al: EphB receptor activity suppresses colorectal cancer progression. Nature. 2005, 435: 1126-1130. 10.1038/nature03626.
Article
CAS
PubMed
Google Scholar
Javelaud D, Mauviel A: Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol. 2004, 36: 1161-1165. 10.1016/S1357-2725(03)00255-3.
Article
CAS
PubMed
Google Scholar
Robson H, Anderson E, James RD, Schofield PF: Transforming growth factor beta 1 expression in human colorectal tumours: an independent prognostic marker in a subgroup of poor prognosis patients. Br J Cancer. 1996, 74: 753-758. 10.1038/bjc.1996.432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gulubova M, Manolova I, Ananiev J, Julianov A, Yovchev Y, Peeva K: Role of TGF-beta1, its receptor TGFbetaRII, and Smad proteins in the progression of colorectal cancer. Int J Colorectal Dis. 2010, 25: 591-599. 10.1007/s00384-010-0906-9.
Article
PubMed
Google Scholar
Berger AP, Kofler K, Bektic J, Rogatsch H, Steiner H, Bartsch G, Klocker H: Increased growth factor production in a human prostatic stromal cell culture model caused by hypoxia. Prostate. 2003, 57: 57-65. 10.1002/pros.10279.
Article
CAS
PubMed
Google Scholar
Xiong B, Gong LL, Zhang F, Hu MB, Yuan HY: TGF beta1 expression and angiogenesis in colorectal cancer tissue. World J Gastroenterol. 2002, 8: 496-498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ono M, Kuwano M: Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res. 2006, 12: 7242-7251. 10.1158/1078-0432.CCR-06-0646.
Article
CAS
PubMed
Google Scholar
Fujimoto K, Sheng H, Shao J, Beauchamp RD: Transforming growth factor-beta1 promotes invasiveness after cellular transformation with activated Ras in intestinal epithelial cells. Exp Cell Res. 2001, 266: 239-249. 10.1006/excr.2000.5229.
Article
CAS
PubMed
Google Scholar
Bowman T, Garcia R, Turkson J, Jove R: STATs in oncogenesis. Oncogene. 2000, 19: 2474-2488. 10.1038/sj.onc.1203527.
Article
CAS
PubMed
Google Scholar
Testa JR, Bellacosa A: AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA. 2001, 98: 10983-10985. 10.1073/pnas.211430998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC: Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001, 3: 245-252. 10.1038/35060032.
Article
CAS
PubMed
Google Scholar
Chan TO, Rittenhouse SE, Tsichlis PN: AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999, 68: 965-1014. 10.1146/annurev.biochem.68.1.965.
Article
CAS
PubMed
Google Scholar
Thant AA, Nawa A, Kikkawa F, Ichigotani Y, Zhang Y, Sein TT, Amin AR, Hamaguchi M: Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells. Clin Exp Metastasis. 2000, 18: 423-428. 10.1023/A:1010921730952.
Article
CAS
PubMed
Google Scholar
Engebraaten O, Bjerkvig R, Pedersen PH, Laerum OD: Effects of EGF, bFGF, NGF and PDGF(bb) on cell proliferative, migratory and invasive capacities of human brain-tumour biopsies in vitro. Int J Cancer. 1993, 53: 209-214. 10.1002/ijc.2910530206.
Article
CAS
PubMed
Google Scholar
Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, Celik I, Kohne CH: Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012, 48: 1466-1475. 10.1016/j.ejca.2012.02.057.
Article
CAS
PubMed
Google Scholar
Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pinter T, Lim R, Bodoky G, et al: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009, 360: 1408-1417. 10.1056/NEJMoa0805019.
Article
CAS
PubMed
Google Scholar
Thairu N, Kiriakidis S, Dawson P, Paleolog E: HIF-Isoforms have divergent roles in the angiogenesis of colorectal cancer. Colorectal Dis. 2011, 13: 20 (P034)-
Google Scholar
Thairu N, Kiriakidis S, Dawson P, Paleolog E: Short-term cultures of tumour-derived colorectal cancer cells – a novel in vitro model for the evaluation of angiogenesis in colorectal cancer. Br J Surg. 2012, 99: 7 (abstract O637)-
Google Scholar
Thairu N, Kiriakidis S, Dawson P, Paleolog E: Short-term cultures of tumour-derived colorectal cancer cells – a novel in vitro model for the evaluation of angiogenesis in colorectal cancer. Colorectal Dis. 2012, 14: 16 (P027)-
Google Scholar