Neumann V, Löseke S, Nowak D, Herth FJ, Tannapfel A. Malignant pleural mesothelioma: incidence, etiology, diagnosis, treatment, and occupational health. Dtsch Arztebl Int. 2013;110(18):319–26.
PubMed
PubMed Central
Google Scholar
Cavone D, Caputi A, De Maria L, Cannone E, Mansi F, Birtolo F, et al. Epidemiology of Mesothelioma. Environments. 2019;6(7):1–18. https://doi.org/10.3390/environments6070076.
Article
Google Scholar
Amin W, Linkov F, Landsittel DP, Silverstein JC, Bashara W, Gaudioso C, et al. Factors influencing malignant mesothelioma survival: a retrospective review of the national mesothelioma virtual bank cohort. F1000Res. 2018;7:1184.
Article
PubMed
Google Scholar
Popat S, Baas P, Faivre-Finn C, Girard N, Nicholson AG, Nowak AK, Opitz I, Scherpereel A, Reck M. Malignant pleural mesothelioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2022;33(2):129–42.
Article
CAS
PubMed
Google Scholar
Zucali PA. Target therapy: new drugs or new combinations of drugs in malignant pleural mesothelioma. J Thorac Dis. 2018;10(Suppl 2):S311–21.
Article
PubMed
PubMed Central
Google Scholar
Finger EC, Cheng CF, Williams TR, Rankin EB, Bedogni B, Tachiki L, et al. CTGF is a therapeutic target for metastatic melanoma. Oncogene. 2014;33(9):1093–100.
Article
CAS
PubMed
Google Scholar
Kim H, Son S. Therapeutic potential of connective tissue growth factor (CTGF) in triple-negative breast cancer. Annals of Oncology. 2019;30. https://doi.org/10.1093/annonc/mdz029.015.
Chu CY, Chang CC, Prakash E, Kuo ML. Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci. 2008;15(6):675–85.
Article
CAS
PubMed
Google Scholar
Xiu M, Liu YH, Brigstock DR, He FH, Zhang RJ, Gao RP. Connective tissue growth factor is overexpressed in human hepatocellular carcinoma and promotes cell invasion and growth. World J Gastroenterol. 2012;18(47):7070–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jing J, Li P, Li T, Sun Y, Guan H. RNA Interference targeting connective tissue growth factor inhibits the transforming growth factor-β2 induced proliferation in human tenon capsule fibroblasts. J ophthalmol. 2013;2013: 354798.
PubMed
PubMed Central
Google Scholar
Fujii M, Toyoda T, Nakanishi H, Yatabe Y, Sato A, Matsudaira Y, et al. TGF-β synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth. J Exp Med. 2012;209(3):479–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujii M, Nakanishi H, Toyoda T, Tanaka I, Kondo Y, Osada H, Sekido Y. Convergent signaling in the regulation of connective tissue growth factor in malignant mesothelioma: TGFβ signaling and defects in the Hippo signaling cascade. Cell Cycle. 2012;11(18):3373–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohara Y, Chew SH, Misawa N, Wang S, Somiya D, Nakamura K, Kajiyama H, Kikkawa F, Tsuyuki Y, Jiang L, Yamashita K, Sekido Y, Lipson KE, Toyokuni S. Connective tissue growth factor-specific monoclonal antibody inhibits growth of malignant mesothelioma in an orthotopic mouse model. Oncotarget. 2018;9(26):18494–509.
Article
PubMed
PubMed Central
Google Scholar
Jiang L, Yamashita Y, Chew SH, Akatsuka S, Ukai S, Wang S, Nagai H, Okazaki Y, Takahashi T, Toyokuni S. Connective tissue growth factor and β-catenin constitute an autocrine loop for activation in rat sarcomatoid mesothelioma. J Pathol. 2014;233(4):402–14.
Article
CAS
PubMed
Google Scholar
Ohara Y, Enomoto A, Tsuyuki Y, Sato K, Iida T, Kobayashi H, Mizutani Y, Miyai Y, Hara A, Mii S, Suzuki J, Yamashita K, Ito F, Motooka Y, Misawa N, Fukui T, Kawaguchi K, Yokoi K, Toyokuni S. Connective tissue growth factor produced by cancer-associated fibroblasts correlates with poor prognosis in epithelioid malignant pleural mesothelioma. Oncol Rep. 2020;44(3):838–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature. 1999;401(6752):480–5.
Article
CAS
PubMed
Google Scholar
Tang J, Gifford CC, Samarakoon R, Higgins PJ. Deregulation of negative controls on TGF-β1 signaling in tumor progression. Cancers (Basel). 2018;10(6):159.
Article
CAS
Google Scholar
Togo N, Ohwada S, Sakurai S, Toya H, Sakamoto I, Yamada T, et al. Prognostic significance of BMP and activin membrane-bound inhibitor in colorectal cancer. World J Gastroenterol. 2008;14(31):4880–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu W, Chai H. Inhibition of BAMBI reduces the viability and motility of colon cancer via activating TGF-β/Smad pathway in vitro and in vivo. Oncol Lett. 2017;14(4):4793–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang X, Li M, Hu M, Wei P, Zhu W. BAMBI overexpression together with beta-sitosterol ameliorates NSCLC via inhibiting autophagy and inactivating TGF-β/Smad2/3 pathway. Oncol Rep. 2017;37(5):3046–54.
Article
CAS
PubMed
Google Scholar
Marwitz S, Depner S, Dvornikov D, Merkle R, Szczygiel M, Muller-Decker K, et al. Downregulation of the TGF-β Pseudoreceptor BAMBI in Non-Small Cell Lung Cancer Enhances TGF-β Signaling and Invasion. Cancer Res. 2016;76(13):3785–801.
Article
CAS
PubMed
Google Scholar
Khin SS, Kitazawa R, Win N, Aye TT, Mori K, Kondo T, et al. BAMBI gene is epigenetically silenced in subset of high-grade bladder cancer. Int J Cancer. 2009;125(2):328–38.
Article
CAS
PubMed
Google Scholar
Di Stefano A, Sangiorgi C, Gnemmi I, Casolari P, Brun P, Ricciardolo FLM, Contoli M, Papi A, Maniscalco P, Ruggeri P, Girbino G, Cappello F, Pavlides S, Guo Y, Chung KF, Barnes PJ, Adcock IM, Balbi B, Caramori G. TGF-β Signaling pathways in different compartments of the lower airways of patients with stable COPD. Chest. 2018;153(4):851–62.
Article
PubMed
CAS
Google Scholar
Braig S, Wallner S, Junglas B, Fuchshofer R, Bosserhoff AK. CTGF is overexpressed in malignant melanoma and promotes cell invasion and migration. Br J Cancer. 2011;105(2):231–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wanninger J, Neumeier M, Bauer S, Weiss TS, Eisinger K, Walter R, Dorn C, Hellerbrand C, Schäffler A, Buechler C. Adiponectin induces the transforming growth factor decoy receptor BAMBI in human hepatocytes. FEBS Lett. 2011;585(9):1338–44.
Article
CAS
PubMed
Google Scholar
Kane AB. Mesothelial and Mesothelioma Cell Lines. In: Pass HI, Vogelzang NJ, Carbone M, editors. Malignant Mesothelioma: Advances in Pathogenesis, Diagnosis, and Translational Therapies. New York: Springer New York; 2005. p. 87–98. https://link.springer.com/chapter/10.1007/0-387-28274-2_5.
Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, Akatsuka S, Horio Y, Hida T, Kondo Y, Toyokuni S, Osada H, Sekido Y. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71(3):873–83.
Article
CAS
PubMed
Google Scholar
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-w102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning Y, et al. Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem. 2009;284(44):30097–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L, Park J, Jang KY, Park HS, Wagle S, Yang KH, et al. The overexpression of BAMBI and its involvement in the growth and invasion of human osteosarcoma cells. Oncol Rep. 2013;30(3):1315–22.
Article
CAS
PubMed
Google Scholar
Sekiya T, Adachi S, Kohu K, Yamada T, Higuchi O, Furukawa Y, et al. Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J Biol Chem. 2004;279(8):6840–6.
Article
CAS
PubMed
Google Scholar
Liu K, Song X, Ma H, Liu L, Wen X, Yu J, et al. Knockdown of BAMBI inhibits beta-catenin and transforming growth factor beta to suppress metastasis of gastric cancer cells. Mol Med Rep. 2014;10(2):874–80.
Article
CAS
PubMed
Google Scholar
Chen J, Bush JO, Ovitt CE, Lan Y, Jiang R. The TGF-β pseudoreceptor gene Bambi is dispensable for mouse embryonic development and postnatal survival. Genesis (New York, NY : 2000). 2007;45(8):482–6.
Article
CAS
Google Scholar
Sekiya T, Oda T, Matsuura K, Akiyama T. Transcriptional regulation of the TGF-β pseudoreceptor BAMBI by TGF-β signaling. Biochem Biophys Res Commun. 2004;320(3):680–4.
Article
CAS
PubMed
Google Scholar
Bai L, Chang HM, Cheng JC, Klausen C, Chu G, Leung PCK, et al. SMAD1/5 mediates bone morphogenetic protein 2-induced up-regulation of BAMBI expression in human granulosa-lutein cells. Cell Signal. 2017;37:52–61.
Article
CAS
PubMed
Google Scholar
Song Y, Kim JS, Choi EK, Kim J, Kim KM, Seo HR. TGF-β-independent CTGF induction regulates cell adhesion mediated drug resistance by increasing collagen I in HCC. Oncotarget. 2017;8(13):21650–62.
Article
PubMed
PubMed Central
Google Scholar
Xavier S, Gilbert V, Rastaldi MP, Krick S, Kollins D, Reddy A, et al. BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS ONE. 2010;5(9): e12995.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat Cell Biol. 2002;4(8):599–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver N, Sternlicht M, Gerritsen K, Goldschmeding R. Could aging human skin use a connective tissue growth factor boost to increase collagen content? J Invest Dermatol. 2010;130(2):338–41.
Article
CAS
PubMed
Google Scholar
Yao X, Yu T, Xi F, Xu Y, Ma L, Pan X, et al. BAMBI shuttling between cytosol and membrane is required for skeletal muscle development and regeneration. Biochem Biophys Res Commun. 2019;509(1):125–32.
Article
CAS
PubMed
Google Scholar
Pils D, Wittinger M, Petz M, Gugerell A, Gregor W, Alfanz A, et al. BAMBI is overexpressed in ovarian cancer and co-translocates with Smads into the nucleus upon TGF-β treatment. Gynecol Oncol. 2010;117(2):189–97.
Article
CAS
PubMed
Google Scholar
Zhang J-C, Chen G, Chen L, Meng Z-J, Xiong X-Z, Liu H-J, et al. TGF-β/BAMBI pathway dysfunction contributes to peripheral Th17/Treg imbalance in chronic obstructive pulmonary disease. Sci Rep. 2016;6:31911.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Z, Gao C, Ning Y, He X, Wu W, Chen YG. The pseudoreceptor BMP and activin membrane-bound inhibitor positively modulates Wnt/beta-catenin signaling. J Biol Chem. 2008;283(48):33053–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vivo C, Lévy F, Pilatte Y, Fleury-Feith J, Chrétien P, Monnet I, et al. Control of cell cycle progression in human mesothelioma cells treated with gamma interferon. Oncogene. 2001;20(9):1085–93.
Article
CAS
PubMed
Google Scholar
Vivo C, Lecomte C, Levy F, Leroy K, Kirova Y, Renier A, et al. Cell cycle checkpoint status in human malignant mesothelioma cell lines: response to gamma radiation. Br J Cancer. 2003;88(3):388–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sobhani N, Corona SP, Zanconati F, Generali D. Cyclin dependent kinase 4 and 6 inhibitors as novel therapeutic agents for targeted treatment of malignant mesothelioma. Genes Cancer. 2017;8(3–4):495–6.
Article
PubMed
PubMed Central
Google Scholar
Kothapalli D, Grotendorst GR. CTGF modulates cell cycle progression in cAMP-arrested NRK fibroblasts. J Cell Physiol. 2000;182(1):119–26.
Article
CAS
PubMed
Google Scholar
Abdel-Wahab N, Weston BS, Roberts T, Mason RM. Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy. J Am Soc Nephrol. 2002;13(10):2437–45.
Article
PubMed
Google Scholar
Riley KG, Pasek RC, Maulis MF, Peek J, Thorel F, Brigstock DR, et al. Connective Tissue Growth Factor Modulates Adult β-Cell Maturity and Proliferation to Promote β-Cell Regeneration in Mice. Diabetes. 2015;64(4):1284–98.
Article
CAS
PubMed
Google Scholar
Bonelli MA, Digiacomo G, Fumarola C, Alfieri R, Quaini F, Falco A, et al. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells. Neoplasia. 2017;19(8):637–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saini SS, Klein MA. Targeting Cyclin D1 in Non-small Cell Lung Cancer and Mesothelioma Cells by Antisense Oligonucleotides. Anticancer Res. 2011;31(11):3683–90.
CAS
PubMed
Google Scholar
Rooney B, O’Donovan H, Gaffney A, Browne M, Faherty N, Curran SP, et al. CTGF/CCN2 activates canonical Wnt signalling in mesangial cells through LRP6: Implications for the pathogenesis of diabetic nephropathy. FEBS Lett. 2011;585(3):531–8.
Article
CAS
PubMed
Google Scholar