Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J clin. 2021;71(3):209–49.
Article
PubMed
Google Scholar
Cheng B, Xiong S, Li C, Liang H, Zhao Y, Li J, Shi J, Ou L, Chen Z, Liang P, et al. An annual review of the remarkable advances in lung cancer clinical research in 2019. J Thorac Dis. 2020;12(3):1056–69.
Article
PubMed
PubMed Central
Google Scholar
Su Z, Jiang Y, Li C, Zhong R, Wang R, Wen Y, Liang H, Chen Z, He J, Liang W. Relationship between lung function and lung cancer risk: a pooled analysis of cohorts plus Mendelian randomization study. J Cancer Res Clin Oncol. 2021;147(10):2837–49.
Article
PubMed
Google Scholar
Mu L, Ding K, Tu R, Yang W. Identification of 4 immune cells and a 5-lncRNA risk signature with prognosis for early-stage lung adenocarcinoma. J Transl Med. 2021;19(1):127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi R, Bao X, Unger K, Sun J, Lu S, Manapov F, Wang X, Belka C, Li M. Identification and validation of hypoxia-derived gene signatures to predict clinical outcomes and therapeutic responses in stage I lung adenocarcinoma patients. Theranostics. 2021;11(10):5061–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Xiao Z, Gong J, Liu Z, Zhang M, Zhang Z. A prognostic nomogram for lung adenocarcinoma based on immune-infiltrating Treg-related genes: from bench to bedside. Transl Lung Cancer Res. 2021;10(1):167–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang T, Hao L, Cui R, Liu H, Chen J, An J, Qi S, Li Z. Identification of an immune prognostic 11-gene signature for lung adenocarcinoma. PeerJ. 2021;9:e10749.
Article
PubMed
PubMed Central
Google Scholar
Geng W, Lv Z, Fan J, Xu J, Mao K, Yin Z, Qing W, Jin Y. Identification of the Prognostic Significance of Somatic Mutation-Derived LncRNA Signatures of Genomic Instability in Lung Adenocarcinoma. Front Cell Dev Biol. 2021;9:657667.
Article
PubMed
PubMed Central
Google Scholar
Yang J, Xu T, Gomez DR, Yuan X, Nguyen QN, Jeter M, Song Y, Komaki R, Hu Y, Hahn SM, et al. Nomograms incorporating genetic variants in BMP/Smad4/Hamp pathway to predict disease outcomes after definitive radiotherapy for non-small cell lung cancer. Cancer Med. 2018;7(6):2247–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Luo L, Dong J, Liu M, Zhai D, Huang D, Ling L, Jia X, Luo K, Zheng G. A prognostic 11-DNA methylation signature for lung squamous cell carcinoma. J Thorac Dis. 2020;12(5):2569–82.
Article
PubMed
PubMed Central
Google Scholar
Ma X, Cheng J, Zhao P, Li L, Tao K, Chen H. DNA methylation profiling to predict recurrence risk in stage Iota lung adenocarcinoma: Development and validation of a nomogram to clinical management. J Cell Mol Med. 2020;24(13):7576–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Sun L, Ru Y, Zhang S, Miao J, Guo P, Lv J, Guo F, Liu B. A risk score system based on DNA methylation levels and a nomogram survival model for lung squamous cell carcinoma. Int J Mol Med. 2020;46(1):252–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong X, Zhang R, He J, Lai L, Alolga RN, Shen S, Zhu Y, You D, Lin L, Chen C, et al. Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma. Aging. 2019;11(16):6312–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24(3):365–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng X, Xu X, Wang Y, Hawke DH, Yu S, Han L, Zhou Z, Mojumdar K, Jeong KJ, Labrie M, et al. A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. Cancer Cell. 2018;33(5):817–28 (e817).
Article
CAS
PubMed
PubMed Central
Google Scholar
Han L, Diao L, Yu S, Xu X, Li J, Zhang R, Yang Y, Werner HMJ, Eterovic AK, Yuan Y, et al. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell. 2015;28(4):515–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gumireddy K, Li A, Kossenkov AV, Sakurai M, Yan J, Li Y, Xu H, Wang J, Zhang PJ, Zhang L, et al. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nat Commun. 2016;7:10715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shigeyasu K, Okugawa Y, Toden S, Miyoshi J, Toiyama Y, Nagasaka T, Takahashi N, Kusunoki M, Takayama T, Yamada Y, et al. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer. JCI insight. 2018;3(12):e99976.
Article
PubMed Central
Google Scholar
Xu X, Wang Y, Mojumdar K, Zhou Z, Jeong KJ, Mangala LS, Yu S, Tsang YH, Rodriguez-Aguayo C, Lu Y, et al. A-to-I-edited miRNA-379-5p inhibits cancer cell proliferation through CD97-induced apoptosis. J Clin Investig. 2019;129(12):5343–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen P, Yang T, Chen Q, Yuan H, Wu P, Cai B, Meng L, Huang X, Liu J, Zhang Y, et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol Cancer. 2021;20(1):51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han J, An O, Hong H, Chan THM, Song Y, Shen H, Tang SJ, Lin JS, Ng VHE, Tay DJT, et al. Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. Sci Adv. 2020;6(25):e5136.
Article
CAS
Google Scholar
Fu L, Qin YR, Ming XY, Zuo XB, Diao YW, Zhang LY, Ai J, Liu BL, Huang TX, Cao TT, et al. RNA editing of SLC22A3 drives early tumor invasion and metastasis in familial esophageal cancer. Proc Natl Acad Sci USA. 2017;114(23):E4631–40.
CAS
PubMed
PubMed Central
Google Scholar
Kurkowiak M, Arcimowicz L, Chrusciel E, Urban-Wojciuk Z, Papak I, Keegan L, O’Connell M, Kowalski J, Hupp T, Marek-Trzonkowska N: The effects of RNA editing in cancer tissue at different stages in carcinogenesis. RNA biology. 2021;18(11):1524–39.
Song Y, An O, Ren X, Chan THM, Tay DJT, Tang SJ, Han J, Hong H, Ng VHE, Ke X, et al. RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis. J Hepatol. 2021;74(1):135–47.
Article
CAS
PubMed
Google Scholar
Ramirez-Moya J, Baker AR, Slack FJ, Santisteban P. ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity. Oncogene. 2020;39(18):3738–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood S, Willbanks A, Cheng JX. The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Curr Cancer Drug Targets. 2021;21(4):326–52.
Article
CAS
PubMed
Google Scholar
Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–95.
Article
CAS
PubMed
Google Scholar
Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.
Article
PubMed
PubMed Central
Google Scholar
Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ. 2016;352:i6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51.
Article
CAS
PubMed
Google Scholar
Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clini Cancer Res. 2004;10(21):7252–9.
Article
CAS
Google Scholar
Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17(2):83–96.
Article
CAS
PubMed
Google Scholar
Licht K, Kapoor U, Amman F, Picardi E, Martin D, Bajad P, Jantsch MF. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res. 2019;29(9):1453–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapoor U, Licht K, Amman F, Jakobi T, Martin D, Dieterich C, Jantsch MF. ADAR-deficiency perturbs the global splicing landscape in mouse tissues. Genome Res. 2020;30(8):1107–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorlov IP, Meyer P, Liloglou T, Myles J, Boettger MB, Cassidy A, Girard L, Minna JD, Fischer R, Duffy S, et al. Seizure 6-like (SEZ6L) gene and risk for lung cancer. Can Res. 2007;67(17):8406–11.
Article
CAS
Google Scholar
Lukanova A, Toniolo P, Akhmedkhanov A, Biessy C, Haley NJ, Shore RE, Riboli E, Rinaldi S, Kaaks R. A prospective study of insulin-like growth factor-I, IGF-binding proteins-1, -2 and -3 and lung cancer risk in women. Int J Cancer. 2001;92(6):888–92.
Article
CAS
PubMed
Google Scholar
Kim JJ, Lee YA, Su D, Lee J, Park SJ, Kim B, Jane Lee JH, Liu X, Kim SS, Bae MA, et al. A Near-Infrared Probe Tracks and Treats Lung Tumor Initiating Cells by Targeting HMOX2. J Am Chem Soc. 2019;141(37):14673–86.
Article
CAS
PubMed
Google Scholar
Ghosh D, Ulasov IV, Chen L, Harkins LE, Wallenborg K, Hothi P, Rostad S, Hood L, Cobbs CS. TGFbeta-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme. Stem cells. 2016;34(9):2276–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu KK, Qiu WR, Naveen Raj E, Liu HF, Huang HS, Lin YW, Chang CJ, Chen TH, Chen C, Chang HC, et al. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway. Autophagy. 2017;13(1):187–200.
Article
CAS
PubMed
Google Scholar
Newman AC, Scholefield CL, Kemp AJ, Newman M, McIver EG, Kamal A, Wilkinson S. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kappaB signalling. PLoS ONE. 2012;7(11):e50672.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Wang X. miR-122-5p promotes aggression and epithelial-mesenchymal transition in triple-negative breast cancer by suppressing charged multivesicular body protein 3 through mitogen-activated protein kinase signaling. J Cell Physiol. 2020;235(3):2825–35.
Article
CAS
PubMed
Google Scholar
Wu W, Liu F, Wu K, Chen Y, Wu H, Dai G, Zhang W. Lon Peptidase 2, Peroxisomal (LONP2) Contributes to Cervical Carcinogenesis via Oxidative Stress. Med Sci Monit. 2018;24:1310–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisenberg E. Proteome Diversification by RNA Editing. Methods Mol Biol. 2021;2181:229–51.
Article
CAS
PubMed
Google Scholar
Liu Y, Wu L, Ao H, Zhao M, Leng X, Liu M, Ma J, Zhu J. Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer. Aging. 2019;11(23):11440–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan Y, Zhang M, Xu S, Xu S. Identification of an Immune Gene Expression Signature for Predicting Lung Squamous Cell Carcinoma Prognosis. Biomed Res Int. 2020;2020:5024942.
PubMed
PubMed Central
Google Scholar
Li N, Wang J, Zhan X. Identification of Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Front Immunol. 2021;12:752643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Li X, Gao LN, You CG. Integrated Analysis of the Functions and Prognostic Values of RNA Binding Proteins in Lung Squamous Cell Carcinoma. Front Genet. 2020;11:185.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diao X, Guo C, Liu L, Wang G, Li S. Identification and validation of an individualized prognostic signature of lung squamous cell carcinoma based on ferroptosis-related genes. Thoracic Cancer. 2021;12(23):3236–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Y, Ren K. Five long non-coding RNAs establish a prognostic nomogram and construct a competing endogenous RNA network in the progression of non-small cell lung cancer. BMC Cancer. 2021;21(1):457.
Article
CAS
PubMed
PubMed Central
Google Scholar