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Abstract 

Background:  Adenosine-to-inosine RNA editing (ATIRE) is characterized as non-mutational epigenetic reprogram-
ming hallmark of cancer, while little is known about its predictive role in cancer survival.

Methods:  To explore survival-related ATIRE events in lung squamous cell carcinoma (LUSC), ATIRE profile, gene 
expression data, and corresponding clinical information of LUSC patients were downloaded from the TCGA database. 
Patients were randomly divided into a training (n = 134) and validation cohort (n = 94). Cox proportional hazards 
regression followed by least absolute shrinkage and selection operator algorithm were performed to identify survival-
related ATIRE sites and to generate ATIRE risk score. Then a nomogram was constructed to predict overall survival (OS) 
of LUSC patients. The correlation of ATIRE level and host gene expression and ATIREs’ effect on transcriptome expres-
sion were analyzed.

Results:  Seven ATIRE sites that were TMEM120B chr12:122215052A > I, HMOX2 chr16:4533713A > I, CALCOCO2 
chr17:46941503A > I, LONP2 chr16:48388244A > I, ZNF440 chr19:11945758A > I, CLCC1 chr1:109474650A > I, and CHMP3 
chr2:86754288A > I were identified to generate the risk score, of which high levers were significantly associated with 
worse OS and progression-free survival in both the training and validation sets. High risk-score was also associated 
with advanced T stages and worse clinical stages. The nomogram performed well in predicting OS probability of 
LUSC. Moreover, the editing of ATIRE sites exerted a significant association with expression of host genes and affected 
several cancer-related pathways.

Conclusions:  This is the first comprehensive study to analyze the role of ATIRE events in predicting LUSC survival. The 
AITRE-based model might serve as a novel tool for LUSC survival prediction.
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Introduction
As the leading cause of cancer-related death, lung can-
cer has resulted in an estimated 1,796,144 deaths in 2020 
[1]. Over the past two decades, individualized targeted 
therapy has been practiced in lung cancer with appreci-
able benefits in some patients [2]. However, there are 
still a substantial portion of patients who undergo non-
response, side effects and adverse reactions after targeted 
therapy, underscoring the critical need for accurate pre-
diction models for cancer prognosis and new therapeutic 
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targets. Therefore, to identify underlying molecular alter-
ations of cancer and to characterize prognostic molecu-
lar markers have important implications for personalized 
cancer treatment.

The leapfrog development of high-throughput sequenc-
ing technology and bioinformatics tool have deeply 
revealed the abnormally genetic and non-mutational epi-
genetic alternations in human genome and transcriptome 
for cancer, which are promising biomarkers as tools for 
cancer diagnosis, prognostic assessment, and therapy. 
Unlike gene expression [3–7], somatic mutation [8], 
genetic variant [9], and DNA methylation [10–13], all 
of which have been extensively explored for establish-
ing cancer prognostic prediction model, no study exploit 
the RNA editing. RNA editing is a molecular process 
through which cells can make specific alterations in the 
chemical structure of RNA molecules after transcrip-
tion. Over 70% of RNA editing in human is adenosine-to-
inosine RNA editing (ATIRE), which convert adenosine 
to inosine [14]. Since inosine is recognized as guanosine 
by posttranscriptional regulatory machinery, this will 
cause potential recoding events in amino acid sequences, 
alternative splicing, and binding reprogramming of 
microRNAs or RNA binding proteins in untranslated 
region (UTR) [15, 16]. So far, several ATIRE events such 
as GABRA3 [17], AZIN1 [18], and miRNA-379-5p [19] 
editing have been reported to be associated with various 
cancer survival. Meanwhile, ATIRE affect cancer pro-
gression [20, 21], metastasis [22], tumorigenesis [23–25], 
and drug resistance [26]. These findings highlight poten-
tial application of ATIRE as cancer biomarker. Yet, no 
study establish cancer prognostic prediction model based 
on ATIRE and the performance is unknown.

Here, we aimed to develop a prediction model using 
ATIRE to predict overall survival (OS) of individuals 
affected by lung squamous cell carcinoma (LUSC). We 
identified OS-related ATIRE events by analyzing the 
whole ATIRE profiles and clinical data of LUSC from 
the Cancer Genome Atlas (TCGA) database, and con-
structed a nomogram for predicting LUSC OS based on 
ATIRE risk score and clinicopathological characteristics. 
We also evaluated the underlying mechanisms by which 
these ATIRE sites impact LUSC survival.

Materials and methods
Sample selection and data processing
The ATIRE profiles of TCGA-LUSC samples were down-
loaded from the synapse website (https://​www.​synap​
se.​org/#​!Synap​se:​syn43​82524) that was uploaded by 
Han L et  al. [16]. The corresponding clinical informa-
tion and gene expressional data were obtained from 
the TCGA database (https://​portal.​gdc.​cancer.​gov/). 
Only 228 samples who owned available ATIRE data 

were included in this study and randomly divided into 
a training set (n = 134) and a validation set (n = 94). A 
flowchart describing the data processing is provided in 
Fig.  1a. After removing the ATIRE sites with undeter-
mined editing level in over 50% of cases, the univariate 
Cox proportional hazards (Cox-PH) regression was first 
used to explore OS-related ATIRE sites in the training 
set using the packages- “survival” and “survminer” in R 
(version 4.0.4), and the sites with P < 0.001 were consid-
ered to be significant. Then the least absolute shrinkage 
and selection operator (LASSO) algorithm was applied 
to determine the optimal prognostic ATIRE sites using 
the package-”glmnet” in R with penalty parameter tun-
ing conducted by tenfold cross-validation [27]. Before 
LASSO, those sites with editing level less than 5% in over 
90% of samples were removed, because extremely low 
level of editing is difficult to quantify precisely. These 
optimal ATIRE sites were used to generate a risk score 
with the coefficients from LASSO as follows:

Development and validation of an ATIRE‑based nomogram
The ATIRE risk score and clinicopathological features 
including T stage, N stage, age at diagnosis and gender 
were enrolled to establish an OS prognostic nomogram 
using the Cox-PH with the package- “rms” in R. The 
nomogram was based on proportionally converting each 
Cox regression coefficient in multivariate regression to 
a 0- to 100-point scale. Predictive performance of the 
nomogram was measured by the Harrell’s C-index and 
calibration with 100 bootstrap samples using the pack-
ages-”Hmisc”, “nomogramEx”, and “nomogramFormula” 
in R [28]. For validation, the total points of patients in 
the validation set were calculated according to the estab-
lished nomogram, then Cox-PH regression was per-
formed using the total point as a factor, and the Harrell’s 
C-index and calibration were assessed. Finally, a decision 
curve analysis were performed to determine the clinical 
usefulness of different prognostic models by quantifying 
the net benefits at different threshold probabilities using 
the package-”ggDCA” in R [29].

Correlations between levels of ATIRE sites and expressions 
of target genes
To explore the possible mechanisms about how above 
ATIRE sites affect LUSC survival, correlations between 
the levels of them and their host genes’ expressions were 
analyzed in TCGA-LUSC tumor tissues using the Spear-
man rank test. Fragments Per Kilobase Million (FPKM) 
was used to demonstrate the expression value of target 
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gene. Meanwhile, the correlation between the ATIRE risk 
score and ADAR1 expression were also analyzed.

Effect of AITRE risk score on whole transcriptome 
expression and pathway
To further demonstrate the potential effect of ATIRE risk 
score on whole transcriptome expression, RNA-seq raw 
counts of TCGA-LUSC tumor tissues were downloaded 
and compared between the high- and low-risk patients 
using the package-”DESeq2″ in R. Then the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway and 
gene-set enrichment analysis (GSEA) were carried  out 
using the package-”clusterProfiler” in R and GSEA 4.1.0 
software, respectively. KEGG was permitted by Kanehisa 
Laboratories [30].

Statistical analysis
For the aforementioned statistical tests in R software, 
the codes were presented in Supplementary methods. 
In addition, the effect of ATIRE risk score on OS as well 
as progression-free survival (DFS), demonstrated by 
hazard ratio (HR) and 95% confidence intervals (CI), 
was analyzed using the log-rank test, univariate or mul-
tivariate Cox-PH. Stratification analysis with regarding 
to clinicopathological features, and multiple interaction 
analysis between these factors and the risk score were 
performed using the Cox-PH. Normal-cancer difference 
in editing levels of ATIRE sites was tested by the stu-
dent’s t test or unequal variances t-test. Editing levels 
among multiple groups were compared post hoc if the 
one way ANOVA was significant using the Dunnett’s 
multiple comparisons test. All tests were two-sided and 
evaluated by the Stata software (version 16.0). P < 0.05 
was considered to be statistically significant.

Training group
 (n = 134)

22463 ATIRE  sites were included in 
the univariate Cox regression analysis

Exclusion: ATIRE sites  with 
undetermined editing level

in ≥ 50% cases 

 ATIRE  sites with P value < 0.001  

LUSC cases with 36823 ATIRE 
profile (n = 228)

Validation group
 (n = 94)

Risk model with ATIRE sites after 
LASSO selection 

 Exclusion: ATIRE  sites with 
P value ≥ 0.001  

Exclusion: ATIRE editing 
level < 5%

Nomogram incoporating risk model and 
clinical features
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Fig. 1  Identification of survival-related ATIRE sites in LUSC patients. A The workflow of survival-related ATIRE sites determination for LUSC and 
ATIRE-based nomogram construction. B A Manhattan plot depicts associations between all ATIRE sites and LUSC survival, taking the P values in –
log10 scale from the univariate Cox-PH model as the X-axis, the chromosomal location of the ATIRE sites as the Y-axis. Dotted orange line indicates 
the cut off of significance with P value as 0.001. C Cross-validation for the selection of optimal ATIRE sites (lambda) and dotted vertical lines. ATIRE: 
A-to-I RNA editing
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Results
Baseline clinicopathological characteristics
The clinicopathological characteristics of TCGA-LUSC 
cases used in the current study are presented in Table 1. 
There was no significant difference in age, gender, smok-
ing status, TNM stages and survival status between the 
training group and validation group. Moreover, increas-
ing age (HR = 1.03, 95%CI = 1.00–1.10), male (HR = 1.68, 
95%CI = 1.01–2.80), and advanced T stages (HR = 2.01, 

95%CI = 1.05–3.90) were independent prognostic factors 
for LUSC OS (Supplementary Figure S1).

Generation of ATIRE risk score for LUSC survival
A total of thirty-two ATIRE sites were identified to be 
associated with LUSC OS by the univariate Cox-PH anal-
ysis in the training set (P < 0.001; Fig. 1b). Among them, 
seven sites that are chr12:122215052A > I of TMEM120B, 
chr16:4533713A > I of HMOX2, chr17:46941503A > I 
of CALCOCO2, chr16:48388244A > I of LONP2, 
chr19:11945758A > I of ZNF440, chr1:109474650A > I of 
CLCC1, and chr2:86754288A > I of CHMP3, were selected 
as the optimal prognostic sites by the LASSO analysis 
and used to generate the ATIRE risk score (Fig. 1c). We 
named these sites according to their genomic locations 
on Human Feb. 2009 (GRCh37/hg19 Assembly). When 
editing levels of above ATIRE sites were grouped into 
low and high by the best cut-off point, determining by 
the X-Tile [31], all HRs of these sites are > 1 (Supplemen-
tary Figure S2), indicating that high editing of them were 
associated with unfavorable OS.

The coefficients of each ATIRE site from the LASSO 
analysis were used to generate the ATIRE risk score as 
follows: (7.69 × TMEM120B chr12:122215052A > I) + 
(11.58 × HMOX2 chr16:4533713A > I) + (4.19 × CAL-
COCO2 chr17:46941503A > I) + (8.21 × LONP2 chr16:4
8388244A > I) + (12.46 × ZNF440 chr19:11945758A > I) 
+ (2.63 × CLCC1 chr1:109474650A > I) + (4.47 × CHM
P3 chr2:86754288A > I). Distribution of the risk scores, 
survival status, and editing levels of the 7 ATIRE sites 
are shown in Fig.  2A-D. Taking the median risk score 
as the cut-off point, those patients with high-risk score 
exerted significantly shorter median survival time and 
reduced probability of OS when compared to those with 
low-risk score in both the training (P < 0.0001) and vali-
dation cohorts (P = 0.024). However, we did not observed 
any significant interactions between the clinicopatho-
logical features and the risk score on affecting LUSC OS 
(Fig. 2E).

A significant association between the ATIRE risk score 
and progression-free survival (PFS) was also observed in 
both the training set (P = 0.002; Fig. 2F) and validation set 
(P = 0.018; Fig. 2G). In addition, high risk score was sig-
nificantly associated with worse clinical stages (P = 0.002, 

Table 1  Frequency distributions of demographic and 
clinicopathological features of LUSC cases

a P value calculated by the student’s t test
b P value calculated by the two-side χ2 test
c P value calculated by the log-rank test

Variables Training set (n = 134) Validation 
set (n = 94)

P value

Age ( Mean ± SD, y) 68.3 ± 7.6 67.5 ± 9.0 0.445a

Gender

  Male 101 (73.4%) 67 (71.3%) 0.489b

  Female 33 (24.6%) 27 (28.7%)

Smoking status

  Yes 124 (92.5%) 89 (94.5%) 0.520b

  No 10 (7.5%) 5 (5.3%)

T stages

  1 33 (24.6%) 18 (19.1%) 0.324b

  2 84 (62.7%) 58 (61.8%)

  3 + 4 17 (12.7%) 18 (19.1%)

N stages

  0 91 (67.9%) 57 (60.6%) 0.515b

  1 30 (22.4%) 25 (26.6%)

  2 + 3 13 (9.7%) 12 (12.8%)

M stages

  0 133 (99.2%) 91 (96.8%) 0.166b

  1 1 (0.8%) 3 (3.2%)

Clinical stages

  I 72 (53.7%) 48 (51.1%) 0.248b

  II 38 (28.4%) 21 (22.3%)

  III + IV 24 (17.9%) 25 (26.6%)

Survival status

  Dead 53 (39.6%) 39 (41.5%) 0.678c

  Alive 81 (60.4%) 55 (58.5%)

(See figure on next page.)
Fig. 2  Associations between the ATIRE risk score and prognosis of LUSC patients. A-D Distribution of the ATIRE risk score, survival status, and editing 
levels of the 7 ATIRE sites in the training set (A) and validation set (C), and Kaplan–Meier plots to visualize the survival probabilities grouped by risk 
score in the training set (B) and validation set (D). P values were calculated by the log-rank test. E Stratification analysis of association between the 
ATIRE risk score and LUSC OS in different sub-groups with regarding to clinicopathological features. F, G Associations between the ATIRE risk score 
and progression-free survival in the training (F) and validation sets (G). P values were calculated by the log-rank test. H-J Differences of the ATIRE 
risk score among patients with different clinical stages (H), T stages (I), and N stages (J). P values were calculated by the one-way ANOVA test. K 
Correlation between the ATIRE risk score and age at diagnosis of LUSC patients. P value was calculated by the Spearman rank correlation test
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Fig.  2H) and advanced T stages (P = 0.021, Fig.  2I), but 
not N stages (P = 0.297, Fig. 2J). Meanwhile, there was no 
significant correlation between the risk score and age at 
diagnosis (Fig. 2K).

Establishment of ATIRE‑based nomogram and predictive 
performance evaluation
The nomogram was established with the ATIRE risk 
score and clinicopathological features including T stage, 
N stage, gender, and age at diagnosis (Fig. 3A). The cali-
bration plots presented a superior agreement in both 
the training and validation sets between the observed 
OS rate and nomogram-predicted OS rate at 1-, 3-, and 
5-year (Fig.  3B, C). The Harrell’s C-indexes were 0.808 
(95%CI = 0.770–0.845) in the training set and 0.685 
(95%CI = 0.638–0.733) in the validation set. Consistently, 
the decision curve showed that the ATIRE and clinico-
pathological features nomogram displayed a higher net 
benefit than the single ATIRE nomogram or clinico-
pathological features nomogram in both the training set 
and validation set on predicting 1- and 3-year OS rates 
(Fig. 3D, E; Supplementary Figure S3).

ATIRE risk score is significantly associated with ADAR1 
expression
Since ATIRE is majorly mediated by ADAR1 [32], we 
wondered whether adding ADAR1 level into the ATIRE 
nomogram would improve its performance. However, 
although there was a significant correlation between the 
ATIRE risk score and ADAR1 expression in TCGA-LUSC 
tumor tissues (Supplementary Figure S4), ADAR1 did not 
improve the performance of the established nomogram 
with similar Harrell’s C-indexes in both the training (i.e., 
0.810) and validation (i.e., 0.665) sets. Moreover, we also 
constructed a nomogram integrating clinicopathological 
features and ADAR1. However, its performance was not 
as well as the ATIRE model with the Harrell’s C-indexes 
being 0.592 and 0.673 in the training and validation sets.

Correlations between editing levels of ATIRE sites 
and expressions of host genes
ATIRE majorly regulate physiological and pathologi-
cal processes via affecting host gene expression [33, 34]. 
As shown in Fig.  4A-D, there were significantly nega-
tive correlations between the chr12:122215052A > I 
and TMEM120B (r = -0.263, P = 0.029), the 
chr19:11945758A > I and ZNF440 (r = -0.399, P < 0.001), 

the chr1:109474650A > I and CLCC1 (r = -0.215, 
P = 0.009), and the chr16:48388244A > I and LONP2 
(r = -0.294, P = 0.006). However, no significant correla-
tion (Fig. 4E-G) was observed for the chr16:4533713A > I 
and HMOX2 (P = 0.105), the chr17:46941503A > I and 
CALCOCO2 (P = 0.411), and the chr2:86754288A > I and 
CHMP3 (P = 0.438). Furthermore, ADAR1 knock-down 
significantly altered the expressions of TMEM120B, 
CLCC1, LONP2, but not ZNF440 in A549 cells as the 
GEO data (accession number: GSE147487) shown 
(Fig.  4H-K). Moreover, knock-down of ADAR2 only 
changed the expression of CLCC1. In addition, the edit-
ing levels of CLCC1 chr1:109474650A > I (P = 0.004; 
Fig. 4L) and CALCOCO2 chr17:46941503A > I (P < 0.001; 
Fig.  4M) significantly differed between the tumor tis-
sues and normal tissues. However, due to the limited 
sample size of normal tissues (n = 17), the difference of 
TMEM120B chr12:122,215,052 between the two group 
only displayed a clear trend to be significance (P = 0.051; 
Fig.  4N). However, no remarkable difference were 
observed for the other four sites (Fig. 4O-R).

Differentially expressed genes and relevant biological 
pathways associated to the ATIRE risk score
Testing the gene expression difference among patients 
with high-risk and low-risk score revealed a total of 14 
genes with significant differences between the two groups 
(Fig.  5A), such as SEZ6L [35], IGFBP1 [36], which are 
well-established to be implicated in lung cancer devel-
opment. Further KEGG pathways analysis showed these 
genes were enriched in pathways involving extracellular 
matrix (ECM)-receptor interaction, tumor necrosis fac-
tor (TNF) signaling, nicotine addiction, chemical car-
cinogenesis-reactive oxygen species, and others (Fig. 5B). 
GSEA with the 50 hallmarks consistently found 21 
that were significantly enriched (false discovery rate 
q < 0.05), such as TNF signaling via nuclear factor kappa 
B (NF-κB), epithelial mesenchymal transition (EMT), and 
inflammation response (Fig. 5C).

Discussion
Establishment of cancer prognostic prediction model 
is not only critical to predict the prognosis outcome of 
cancer but also the selection of optimizing treatment. 
Progress  in  lung cancer OS predictive models, while 
substantial, was not as good as initially expected. There-
fore, exploring new model, especially that based on novel 

Fig. 3  Performance of prognostic nomogram based on the ATIRE risk score and clinicopathological features. A The nomogram for predicting 
probabilities of 1-, 3- and 5-year OS in patients with LUSC; B-C Calibration curves show the agreement between the observed OS rate and 
nomogram-predicted OS rate at 1-, 3-, and 5-year in the training group (B) and validation group (C). D-E Decision curves depict the comparison 
in net benefits for predicting 1-year OS rate of different nomograms that are consistent of simple ATIRE risk score, clinicopathological features, and 
combination of ATIRE risk score and clinicopathological features in the training group (D) and validation group (E)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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molecular markers, is still of research value and practical 
significance with purpose to improve the availability of 
predictive model. Our study successfully identified seven 
ATIRE sites to generate an ATIRE risk score for LUSC 
risk stratification with regarding to prognosis, which 
was associated with LUSC OS, PFS, T stage, and clinical 
stage. The nomogram integrating the risk score and clin-
icopathological features exerts  a well predictive perfor-
mance on LUSC OS. To the best of our knowledge, this 
is the first study using ATIRE events as prognostic factors 
for predicting cancer survival.

ATIRE is increasingly being used to characterize cancer 
recently. Here, through Cox-PH regression and LASSO 
algorithm, seven OS-related ATIRE sites were identi-
fied to be optimal prognostic factor for LUSC. Most of 
these sites are located in genes that have been well-
established to be implicated in lung cancer development 
except TMEM120B and ZNF440. For example, HMOX2 
and CLCC1 have been characterized as biomarkers of 
tumor initiating cells, suppression of which will signifi-
cantly increase cancer survival [37, 38]. CALCOCO2 is 
an autophagy receptor that contributes to autophagy 
addiction in Ras-driven lung cancer [39, 40]. CHMP3 is 
a tumor suppressor with lost expression across a wide 
range of human cancers and its high level predicts a 
favorite survival outcome of breast cancer patients [41]. 
Moreover, LONP2 promotes cervical carcinogenesis via 
oxidative stress [42]. These evidences supported func-
tional underpinnings of association between these ATIRE 
sites and LUSC prognosis.

The underlying mechanisms about how does these sites 
relate to LUSC survival are still completely unknown. As 
reported, ATIRE may lead to non-synonymous amino 
acid mutations, mis-regulation of alternative splicing, 
disturbance codon preference, and microRNA-mRNA 
redirection or RNA-binding protein-mRNA redirection, 
thereby influencing gene expression or function [43]. 
Interestingly, significantly negative correlations between 
chr12:122215052A > I level and TMEM120B expres-
sion, chr19:11945758A > I level and ZNF440 expres-
sion, chr1:109474650A > I level and CLCC1 expression, 
chr16:48388244A > I level and LONP2 expression, were 
observed in LUSC tumor tissues. Meanwhile, knock-
down of ADAR1, which is the key editing enzyme 
mediating ATIRE, caused significantly changed in the 
mRNA expressions of TMEM120B, CLCC1 and LONP2, 

indicating a post-transcriptional role of these sites on 
expressions of host genes. Since the four sites are all 
located in the 3’-UTR, it is highly plausible that they 
affect host genes’ expression via disturbing binding abili-
ties of microRNAs or RNA-binding proteins. However, 
the mechanism has yet to be confirmed. Moreover, the 
chr17:46941503A > I is also located in the 3’-UTR of 
CALCOCO2 and chr16:4533713A > I is in the 5’-UTR of 
HMOX2. Considering mRNA levels may not be a good 
proxy for protein level for genes that undergo post-tran-
scriptional regulation, the non-significant correlations 
between chr17:46941503A > I level and CALCOCO2 
mRNA expression, and chr16:4533713A > I level and 
HMOX2 mRNA expression, don’t necessarily mean that 
the editing of the two sites exert no effect on expression 
of host genes. Further analysis at the protein level is war-
ranted. As an intron locus, chr2:86754288A > I is edited 
means it can be transcribed to pre-mRNA, endowing 
possible mechanism of the site beyond expression regula-
tion such as mis-regulation of alternative splicing. Since 
biological rationality is one of the most important evi-
dence supporting the causal relationship between molec-
ular markers and disease development, further studies 
are warranted to elucidate the mechanisms underly-
ing the associations between the seven ATIRE sites and 
LUSC survival.

Furthermore, significant differences in editing lev-
els of chr17:46941503A > I of CALCOCO2, and 
chr1:109474650A > I of CLCC1 were observed between 
LUSC tumor tissues and normal tissues, indicating pos-
sible roles of these sites involving LUSC occurrence.

The ATIRE risk score derived from the aforementioned 
seven ATIRE sites, age at diagnosis, gender, T stage, and 
N stage were used to establish the nomogram. Generally, 
the nomogram exerted a medium accuracy on predict-
ing OS of LUSC, displaying a better overall net benefit 
than the T, N stating system for predicting 1- and 3-year 
OS rate. Although in terms of validity, this ATIRE-based 
nomogram did not display a superior performance com-
pared to previously published gene-expression-based 
nomograms as shown by the Harrell’s C-indexes, given 
an amount of gene-expression-based nomograms exerted 
Harrell’s C-indexes ranging from 0.65–0.85 [44–49]. 
However, in terms of determination reliability, quanti-
fication of AITRE level is more stable and reliable than 
that of gene expression. Compared to ATIRE test, gene 

(See figure on next page.)
Fig. 4  Effect of selected ATIRE sites on host genes’ expression. A-G Correlations between editing levels of the ATIRE sites and expressions of 
host genes in LUSC tumor tissues. FPKM value were used to demonstrate the expression of each gene. P and r were calculated by the Spearman 
correlation test. H–K Expression changes of indicated genes in response to knock-down of ADAR1/2. siADAR1, siADAR2, and siControl refer to siRNA 
targeting ADAR1, ADAR2 and a scramble siRNA, respectively. P value was calculated by the Dunnett’s multiple comparisons test. L-R Differences 
in editing levels of selected ATIRE sites between LUSC tumor tissues and normal tissues. P value was calculated by the student’s t-test or unequal 
variances t-test



Page 9 of 12Liu et al. BMC Cancer          (2022) 22:715 	

A B C

D E F

G H I J

O                                               P

K                                                      L

                                                  Q                                         R                                     

                                             M                                      N                                       

Fig. 4  (See legend on previous page.)



Page 10 of 12Liu et al. BMC Cancer          (2022) 22:715 

expression determination is more easily affected by the 
RNA quality and PCR reaction, which may induce inter- 
and intra-individual variation. In addition, although the 
expression of ADAR1 was significantly correlated with 
the ATIRE risk score, the nomogram including ADAR1 
and clinicopathological features did not perform as well 
as the ATIRE model. It is not surprising because ATIRE 
level is not absolutely determined by ADAR1, and the 
association strength of ADAR1 with LUSC survival is 
greatly inferior to the selected ATIRE sites, which were 
emerged as optimal survival-related sites from thousands 

of candidates. Meanwhile, the ADAR model was more 
susceptible to intra-individual variation. Adding ADAR1 
also did not improve the performance of ATIRE-based 
nomogram, possibly due to the collinearity of ADAR1 
expression and ATIRE risk score.

The current study has several limitations. First, since 
we only analyzed the TCGA data and lacked an external 
group to validate this ATIRE-based model, the reliabil-
ity of its performance has a high risk of bias. Second, 
therapeutic schedule is important to show the applica-
tion of prognostic nomogram for making individualized 
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intervention strategies, but the information is unavail-
able in the TCGA database. Finally, there were selection 
and information bias in the process of subject recruit-
ment and data analysis.

In conclusion, we for the first time generated an 
ATIRE risk score that are associated with OS, PFS, T 
and clinical stage of LUSC patients. The nomogram 
incorporating the ATIRE risk score and clinicopatho-
logical features exerted well predictive performance for 
LUSC OS. Large prospective sets are warranted to vali-
date the robustness of this model to assess the applica-
tion value in “real-world” clinic.
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