Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–84.
Article
CAS
PubMed
Google Scholar
Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.
Article
CAS
PubMed
Google Scholar
Sul J, Blumenthal GM, Jiang X, He K, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung Cancer whose tumors express programmed death-ligand 1. Oncologist. 2016;21:643–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balar AV, Castellano D, O’Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18:1483–92. https://doi.org/10.1016/S1470-2045(17)30616-2.
Article
CAS
PubMed
Google Scholar
Bellmunt J, De Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376:1015–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–21.
Article
CAS
PubMed
Google Scholar
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:1–18.
Article
Google Scholar
Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol. 2015;33:4015–22.
Article
CAS
PubMed
Google Scholar
Matulonis UA, Shapira-Frommer R, Santin A, Lisyanskaya AS, Pignata S, Vergote I, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: interim results from the phase 2 KEYNOTE-100 study. Ann Oncol. 2019;30;1080–87. https://doi.org/10.1093/annonc/mdz135.
Kandalaft LE, Odunsi K, Coukos G. Immune therapy opportunities in ovarian Cancer. Am Soc Clin Oncol Educ B. 2020;3:e228–40.
Article
Google Scholar
Siegel R, Miller K, Fuchs H, Jemal A. Erratum to “Cancer statistics, 2021”. CA Cancer J Clin. 2021;71:359–9.
Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88. https://doi.org/10.1016/S0140-6736(13)62146-7.
Article
PubMed
Google Scholar
Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 2009;9:415–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drakes ML, Stiff PJ. Regulation of ovarian cancer prognosis by immune cells in the tumor microenvironment. Cancers (Basel). 2018;10(9):302.
Article
CAS
Google Scholar
Colvin EK. Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front Oncol. 2014;4:1–6.
Article
Google Scholar
Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol. 2013;3:1–12.
Article
Google Scholar
Kipps E, Tan DSP, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013;13:273–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J, et al. Isolation and characterization of tumor cells from the ascites of ovarian Cancer patients: molecular phenotype of Chemoresistant ovarian tumors. PLoS One. 2012;7.
Zhu Q, Wu X, Wu Y, Wang X. Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep. 2016;36:3472–8.
Article
CAS
PubMed
Google Scholar
Steitz AM, Steffes A, Finkernagel F, Unger A, Sommerfeld L, Jansen JM, et al. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis. 2020;11. https://doi.org/10.1038/s41419-020-2438-8.
Piaggio F, Kondylis V, Pastorino F, Di Paolo D, Perri P, Cossu I, et al. A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: anti-angiogenic and anti-tumor effects. J Control Release. 2016;223:165–77. https://doi.org/10.1016/j.jconrel.2015.12.037.
Article
CAS
PubMed
Google Scholar
Lin Y, Wei C, Liu Y, Qiu Y, Liu C, Guo F. Selective ablation of tumor-associated macrophages suppresses metastasis and angiogenesis. Cancer Sci. 2013;104:1217–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10(1):3974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human Cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol. 2020;9:1–9.
Article
Google Scholar
Glass EB, Masjedi S, Dudzinski SO, Wilson AJ, Duvall CL, Yull FE, et al. Optimizing mannose “click” conjugation to polymeric nanoparticles for targeted siRNA delivery to human and murine macrophages. ACS Omega. 2019;4:16756–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoover AA, Hufnagel DH, Harris W, Bullock K, Glass EB, Liu E, et al. Increased canonical NF-kappaB signaling specifically in macrophages is sufficient to limit tumor progression in syngeneic murine models of ovarian cancer. BMC Cancer. 2020;20(1):970.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega RA, Barham W, Sharman K, Tikhomirov O, Giorgio TD, Yull FE. Manipulating the NF-kB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions. Int J Nanomedicine. 2016;11:2163–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson MA, Werfel TA, Curvino EJ, Yu F, Kavanaugh TE, Sarett SM, et al. Zwitterionic Nanocarrier surface chemistry improves siRNA tumor delivery and silencing activity relative to polyethylene glycol. ACS Nano. 2017;11:5680–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson MA, Patel SS, Yu F, Cottam MA, Glass EB, Hoogenboezem EN, et al. Kupffer cell release of platelet activating factor drives dose limiting toxicities of nucleic acid nanocarriers. Biomaterials. 2021;268:1–12. https://doi.org/10.1016/j.biomaterials.2020.120528.
Article
CAS
Google Scholar
Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther. 2012;20:513–24. https://doi.org/10.1038/mt.2011.294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikam RR, Gore KR. Journey of siRNA: clinical developments and targeted delivery. Nucleic Acid Ther. 2018;28:209–24.
Article
CAS
PubMed
Google Scholar
Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J. 2010;277:4814–27.
Article
CAS
PubMed
Google Scholar
Debacker JM, Gondry O, Lahoutte T, Keyaerts M, Huvenne W. The prognostic value of CD206 in solid malignancies: a systematic review and Meta-analysis. Cancers (Basel). 2021;13:1–16.
Article
CAS
Google Scholar
Yu SS, Lau CM, Barham WJ, Onishko HM, Nelson CE, Li H, et al. Macrophage-specific RNA interference targeting via "click", mannosylated polymeric micelles. Mol Pharm. 2013;10:975–87. https://doi.org/10.1021/mp300434e.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12:967–77. https://doi.org/10.1038/nmat3765.
Article
CAS
PubMed
Google Scholar
Oh N, Park J-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9:51–63.
PubMed
PubMed Central
Google Scholar
Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of immune responses by particle size and shape. Front Immunol. 2021;11:1–23.
Article
CAS
Google Scholar
Ortega RA, Barham WJ, Kumar B, Tikhomirov O, McFadden ID, Yull FE, et al. Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages. Nanoscale. 2015;7:500–10.
Article
CAS
PubMed
Google Scholar
Nelson CE, Kintzing JR, Hanna A, Shannon JM, Gupta MK, Duvall CL. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano. 2013;7:8870–80.
Article
CAS
PubMed
Google Scholar
Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res. 2014;7:1–16.
Article
Google Scholar
Macciò A, Gramignano G, Cherchi MC, Tanca L, Melis L, Madeddu C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep. 2020;10:1–8.
Article
CAS
Google Scholar
Kilchrist KV, Dimobi SC, Jackson MA, Evans BC, Werfel TA, Dailing EA, et al. Gal8 visualization of endosome disruption predicts carrier-mediated biologic drug intracellular bioavailability. ACS Nano. 2019;13:1136–52.
CAS
PubMed
PubMed Central
Google Scholar
Wilson AJ, Fadare O, Beeghly-Fadiel A, Son DS, Liu Q, Zhao S, et al. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer. Oncotarget. 2015;6:21353–68.
Article
PubMed
PubMed Central
Google Scholar
Xing D, Orsulic S. A genetically defined mouse ovarian carcinoma model for the molecular characterization of pathway-targeted therapy and tumor resistance. Proc Natl Acad Sci U S A. 2005;102:6936–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao JB, Ovenell KJ, Curtis EEM, Cecil DL, Koehnlein MR, Rastetter LR, et al. Preservation of tumor-host immune interactions with luciferase-tagged imaging in a murine model of ovarian cancer. J Immunother Cancer. 2015;3:1–9.
Article
Google Scholar
Wilson AJ, Barham W, Saskowski J, Tikhomirov O, Chen L, Lee H, et al. Tracking NF- κB activity in tumor cells during ovarian cancer progression in a syngeneic mouse model. J Ovarian Res. 2013;6:1–11. https://doi.org/10.1186/1757-2215-6-63.
Article
CAS
Google Scholar
Xing D, Orsulic S. A mouse model for the molecular characterization of Brca1-associated ovarian carcinoma. Cancer Res. 2006;66:8949–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med. 2008;205:1261–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Everhart MB, Han W, Sherrill TP, Arutiunov M, Polosukhin VV, Burke JR, et al. Duration and intensity of NF-κB activity determine the severity of endotoxin-induced acute lung injury. J Immunol. 2006;176:4995–5005.
Article
CAS
PubMed
Google Scholar
Stathopoulos GT, Sherrill TP, Han W, Sadikot RT, Yull FE, Blackwell TS, et al. Host nuclear factor-κB activation potentiates lung cancer metastasis. Mol Cancer Res. 2008;6:364–71.
Article
CAS
PubMed
Google Scholar
Han W, Li H, Cai J, Gleaves LA, Polosukhin VV, Segal BH, et al. NADPH oxidase limits lipopolysaccharide-induced lung inflammation and injury in mice through reduction-oxidation regulation of NF-κB activity. J Immunol. 2013;190:4786–94.
Article
CAS
PubMed
Google Scholar
Tariq M, Zhang JQ, Liang GK, He QJ, Ding L, Yang B. Gefitinib inhibits M2-like polarization of tumorassociated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. Acta Pharmacol Sin. 2017;38:1501–11. https://doi.org/10.1038/aps.2017.124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 2021;593:282–8. https://doi.org/10.1038/s41586-021-03442-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
CAS
PubMed
Google Scholar
Wilson AJ, Byun D-S, Nasser S, Murray LB, Ayyanar K, Arango D, et al. HDAC4 promotes growth of Colon Cancer cells via repression of p21. Mol Biol Cell. 2008;19:4062–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.
Article
PubMed
PubMed Central
Google Scholar
Dorrington MG, Fraser IDC. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol. 2019;10:705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson AJ, Saskowski J, Barham W, Yull F, Khabele D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. J Ovarian Res. 2015;8:1–10. https://doi.org/10.1186/s13048-015-0177-8.
Article
CAS
Google Scholar
Wilkinson-ryan I, Pham MM, Sergent P, Tafe LJ, Berwin BL. A syngeneic mouse model of epithelial ovarian Cancer port site metastases. Transl Oncol. 2019;12:62–8. https://doi.org/10.1016/j.tranon.2018.08.020.
Article
PubMed
Google Scholar
Rose S, Misharin A, Perlman H. A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytom A. 2012;81:343–50.
Article
CAS
Google Scholar
Ye J, Yang Y, Dong W, Gao Y, Meng Y, Wang H, et al. Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages. Int J Nanomedicine. 2019;14:3203–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaynes JM, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye-Ogunniyan A, et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med. 2020;12:1–20.
Article
CAS
Google Scholar
Huynh E, Zheng G. Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomedicine. 2015;10:1993–5 www.futuremedicine.com.
Article
CAS
PubMed
Google Scholar
Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244:108–21. https://doi.org/10.1016/j.jconrel.2016.11.015.
Article
CAS
PubMed
Google Scholar
Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19:566–75. https://doi.org/10.1038/s41563-019-0566-2.
Article
CAS
PubMed
Google Scholar
Macciò A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58:133–47.
Article
PubMed
CAS
Google Scholar
Browning L, Patel MR, Horvath EB, Tawara K, Jorcyk CL. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Manag Res. 2018;10:6685–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez PS, O’Prey J, Cardaci S, Barthet VJA, Ichi SJ, Beaumatin F, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018;563:719–23. https://doi.org/10.1038/s41586-018-0729-3.
Article
CAS
PubMed
Google Scholar
Haabeth OAW, Lorvik KB, Hammarström C, Donaldson IM, Haraldsen G, Bogen B, et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun. 2011;2:240.
Article
PubMed
CAS
Google Scholar