American Cancer Society I. Cancer Facts and Figures 2016. Atlanta: American Cancer Society; 2016.
Google Scholar
Antonarakis ES, Feng Z, Trock BJ, Humphreys EB, Carducci MA, Partin AW, et al. The natural history of metastatic progression in men with prostate-specific antigen recurrence after radical prostatectomy: long-term follow-up. BJU Int. 2012;109(1):32–9.
Article
CAS
PubMed
Google Scholar
Hesami P, Holzapfel BM, Taubenberger A, Roudier M, Fazli L, Sieh S, et al. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin Exp Metastasis. 2014;31(4):435–46.
Article
CAS
PubMed
Google Scholar
Simmons JK, Hildreth BE 3rd, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, et al. Animal Models of Bone Metastasis. Veterinary Pathol. 2015;52(5):827–41.
Article
CAS
Google Scholar
Yonou H, Yokose T, Kamijo T, Kanomata N, Hasebe T, Nagai K, et al. Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res. 2001;61(5):2177–82.
CAS
PubMed
Google Scholar
Holzapfel BM, Wagner F, Loessner D, Holzapfel NP, Thibaudeau L, Crawford R, et al. Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone. Biomaterials. 2014;35(13):4108–15.
Article
CAS
PubMed
Google Scholar
Reinisch A, Thomas D, Corces MR, Zhang X, Gratzinger D, Hong W-J, Schallmoser K, Strunk D, Majeti R. A Humanized Ossicle-niche Xenotransplantation Model Enables Improved Human Leukemic Engraftment. Nat Med. 2016;22(7):812–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goyama S, Wunderlich M, Mulloy JC. Xenograft models for normal and malignant stem cells. Blood. 2015;125(17):2630–40.
Article
CAS
PubMed
Google Scholar
Reinisch A, Thomas D, Corces MR, Zhang X, Gratzinger D, Hong WJ, Schallmoser K, Strunk D, Majeti R. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22(7):812–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anthony BA, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 2014;35(1):32–7.
Article
CAS
PubMed
Google Scholar
Shiozawa Y, Havens AM, Pienta KJ, Taichman RS. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia. 2008;22(5):941–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiozawa Y, Pienta KJ, Taichman RS. Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin Cancer Res. 2011;17(17):5553–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren G, Su J, Zhang L, Zhao X, Ling W, L'Huillie A, et al. Species Variation in the Mechanisms of Mesenchymal Stem Cell-Mediated Immunosuppression. Stem cells. 2009;27(8):1954–62.
Article
CAS
PubMed
Google Scholar
Li J, Ezzelarab MB, Cooper DKC. Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation. 2012;19(5):273–85.
Article
PubMed
PubMed Central
Google Scholar
Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem cell Res Therapy. 2015;6(1).
Li O, Tormin A, Sundberg B, Hyllner J, Le Blanc K, Scheding S. Human Embryonic Stem Cell-Derived Mesenchymal Stroma Cells (hES-MSCs) Engraft In Vivo and Support Hematopoiesis without Suppressing Immune Function: Implications for Off-The Shelf ES-MSC Therapies. PLoS ONE. 2013;8(1):e55319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med. 2018;215(3):729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14(6):824–37.
Article
CAS
PubMed
Google Scholar
Carrancio S, Romo C, Ramos T, Lopez-Holgado N, Muntion S, Prins HJ, et al. Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant. 2013;22(7):1171–83.
Article
CAS
PubMed
Google Scholar
Nowlan B, Futrega K, Williams ED, Doran MR. Human bone marrow-derived stromal cell behavior when injected directly into the bone marrow of NOD-scid-gamma mice pre-conditioned with sub-lethal irradiation. Stem Cell Res Ther. 2021;12(1):1–14.
Article
CAS
Google Scholar
Futrega K, Palmer JS, Kinney M, Lott WB, Ungrin MD, Zandstra PW, et al. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues. Biomaterials. 2015;62:1–12.
Article
CAS
PubMed
Google Scholar
Zeng Y, Opeskin K, Goad J, Williams ED. Tumor-induced activation of lymphatic endothelial cells via vascular endothelial growth factor receptor-2 is critical for prostate cancer lymphatic metastasis. Cancer Res. 2006;66(19):9566–75.
Article
CAS
PubMed
Google Scholar
Futrega K, Lott WB, Doran MR. Direct bone marrow HSC transplantation enhances local engraftment at the expense of systemic engraftment in NSG mice. Sci Rep. 2016;6:23886.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature methods. 2012;9(7):671–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ. Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6. Cell Stem Cell. 2009;5(1):54–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bensidhoum M, Chapel A, Francois S, Demarquay C, Mazurier C, Fouillard L, et al. Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood. 2004;103(9):3313–9.
Article
CAS
PubMed
Google Scholar
Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A, Frick J, Sache A, Bouchet S, Thierry D, et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells (Dayton, Ohio). 2006;24(4):1020–9.
Article
Google Scholar
Bunting KD, Fink D, Pfeiffenberger U, Bernthaler T, Schober S, Thonhauser KE, et al. Capacity of the medullary cavity of tibia and femur for intra-bone marrow transplantation in mice. PloS one. 2019;14(11).
Li Q, Hisha H, Yasumizu R, Fan T-X, Yang G-X, Li Q, Cui Y-Z, Wang X-L, Song C-Y, Okazaki S, et al. Analyses of Very Early Hemopoietic Regeneration After Bone Marrow Transplantation: Comparison of Intravenous and Intrabone Marrow Routes. Stem Cells. 2007;25(5):1186–94.
Article
CAS
PubMed
Google Scholar
Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, et al. SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood. 2003;101(8):2924–31.
Article
CAS
PubMed
Google Scholar
Kushida T, Inaba M, Hisha H, Ichioka N, Esumi T, Ogawa R, et al. Intra–bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood. 2001;97(10):3292–9.
Article
CAS
PubMed
Google Scholar
Sanjuan-Pla A, Romero-Moya D, Prieto C, Bueno C, Bigas A, Menendez P. Intra-Bone Marrow Transplantation Confers Superior Multilineage Engraftment of Murine Aorta-Gonad Mesonephros Cells Over Intravenous Transplantation. Stem Cells Dev. 2016;25(3):259–65.
Article
CAS
PubMed
Google Scholar
Yahata T, Ando K, Sato T, Miyatake H, Nakamura Y, Muguruma Y, et al. A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood. 2003;101(8):2905–13.
Article
CAS
PubMed
Google Scholar
Eguchi H, Kuroiwa Y, Matsui A, Sada M, Nagaya N, Kawano S. Intra–Bone Marrow Cotransplantation of Donor Mesenchymal Stem Cells in Pig-to–NOD/SCID Mouse Bone Marrow Transplantation Facilitates Short-Term Xenogeneic Hematopoietic Engraftment. Transplant Proc. 2008;40(2):574–7.
Article
CAS
PubMed
Google Scholar
Wang N, Docherty FE, Brown HK, Reeves KJ, Fowles AC, Ottewell PD, et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res. 2014;29(12):2688–96.
Article
CAS
PubMed
Google Scholar
Yonou H, Ochiai A, Goya M, Kanomata N, Hokama S, Morozumi M, et al. Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions. Prostate. 2004;58(4):406–13.
Article
PubMed
Google Scholar
Tuomela J, Harkonen P. Tumor models for prostate cancer exemplified by fibroblast growth factor 8-induced tumorigenesis and tumor progression. Reprod Biol. 2014;14(1):16–24.
Article
PubMed
Google Scholar
Wu TT, Sikes RA, Cui Q, Thalmann GN, Kao C, Murphy CF, et al. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer. 1998;77(6):887–94.
Article
CAS
PubMed
Google Scholar
Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15(10):730–8.
Article
CAS
PubMed
Google Scholar
Brennen WN, Denmeade SR, Isaacs JT. Mesenchymal stem cells as a vector for the inflammatory prostate microenvironment. Endocr Relat Cancer. 2013;20(5):R269–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Räsänen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316(17):2713–22.
Article
PubMed
CAS
Google Scholar
Burdon TJ, Paul A, Noiseux N, Prakash S, Shum-Tim D. Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone Marrow Res. 2011;2011:207326.
Article
PubMed
Google Scholar
Zhou W, Xie P, Pang M, Yang B, Fang Y, Shu T, et al. Upregulation of CRMP4, a new prostate cancer metastasis suppressor gene, inhibits tumor growth in a nude mouse intratibial injection model. Int J Oncol. 2015;46(1):290–8.
Article
CAS
PubMed
Google Scholar
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2).
Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 2001;169(1):12–20.
Article
CAS
PubMed
Google Scholar