Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.
Article
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.
Article
PubMed
Google Scholar
Kim SJ, Kim SI. Current treatment strategies for castration-resistant prostate cancer. Korean J Urol. 2011;52(3):157–65. https://doi.org/10.4111/kju.2011.52.3.157.
Article
PubMed
PubMed Central
Google Scholar
van Brussel JP, Mickisch GH. Multidrug resistance in prostate cancer. Onkologie. 2003;26(2):175–81. https://doi.org/10.1159/000071510.
Article
PubMed
Google Scholar
Hurwitz M. Chemotherapy in prostate Cancer. Curr Oncol Rep. 2015;17(10):44. https://doi.org/10.1007/s11912-015-0468-7.
Article
PubMed
CAS
Google Scholar
Costea T, Vlad OC, Miclea LC, Ganea C, Szöllősi J, Mocanu MM: Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer. Int J Mol Sci 2020, 21(2), 21, 2, doi: https://doi.org/10.3390/ijms21020401.
Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and Cancer biology. Cell. 2017;168(4):657–69. https://doi.org/10.1016/j.cell.2016.12.039.
Article
PubMed
CAS
Google Scholar
Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18(5):379–401. https://doi.org/10.1038/s41573-019-0016-5.
Article
PubMed
CAS
Google Scholar
Lee SH, Mahendran R, Tham SM, Thamboo TP, Chionh BJ, Lim YX, et al. Tryptophan-kynurenine ratio as a biomarker of bladder cancer. BJU Int. 2020;127(4):445–53. https://doi.org/10.1111/bju.15205.
Article
PubMed
CAS
Google Scholar
D'Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, et al. A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 2015;75(21):4651–64. https://doi.org/10.1158/0008-5472.CAN-15-2011.
Article
PubMed
PubMed Central
CAS
Google Scholar
Venkateswaran N, Lafita-Navarro MC, Hao YH, Kilgore JA, Perez-Castro L, Braverman J, et al. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev. 2019;33(17–18):1236–51. https://doi.org/10.1101/gad.327056.119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geisler S, Lytton SD, Toan NL, Nghia TH, Nam NM, Hung HV, et al. Neopterin levels and Kyn/Trp ratios were significantly increased in dengue virus patients and subsequently decreased after recovery. Int J Infect Dis. 2020;91:162–8. https://doi.org/10.1016/j.ijid.2019.12.005.
Article
PubMed
CAS
Google Scholar
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2020;9(1):1777625. https://doi.org/10.1080/2162402X.2020.1777625.
Article
PubMed
PubMed Central
Google Scholar
Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K, et al. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain. 2009;2(1):8. https://doi.org/10.1186/1756-6606-2-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Platten M, von Knebel DN, Oezen I, Wick W, Ochs K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2014;5:673. https://doi.org/10.3389/fimmu.2014.00673.
Article
PubMed
CAS
Google Scholar
Ye Z, Yue L, Shi J, Shao M, Wu T. Role of IDO and TDO in cancers and related diseases and the therapeutic implications. J Cancer. 2019;10(12):2771–82. https://doi.org/10.7150/jca.31727.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5(11):2516–22. https://doi.org/10.1096/fasebj.5.11.1907934.
Article
PubMed
CAS
Google Scholar
Fallarino F, Volpi C, Zelante T, Vacca C, Calvitti M, Fioretti MC, et al. IDO mediates TLR9-driven protection from experimental autoimmune diabetes. J Immunol. 2009;183(10):6303–12. https://doi.org/10.4049/jimmunol.0901577.
Article
PubMed
CAS
Google Scholar
Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN type 1 signaling. J Immunol. 2005;175(9):5601–5. https://doi.org/10.4049/jimmunol.175.9.5601.
Article
PubMed
CAS
Google Scholar
Holtzhausen A, Zhao F, Evans KS, Tsutsui M, Orabona C, Tyler DS, et al. Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and Immunotolerance: opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunol Res. 2015;3(9):1082–95. https://doi.org/10.1158/2326-6066.CIR-14-0167.
Article
PubMed
PubMed Central
CAS
Google Scholar
Litzenburger UM, Opitz CA, Sahm F, Rauschenbach KJ, Trump S, Winter M, et al. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget. 2014;5(4):1038–51. https://doi.org/10.18632/oncotarget.1637.
Article
PubMed
PubMed Central
Google Scholar
Ball HJ, Sanchez-Perez A, Weiser S, Austin CJ, Astelbauer F, Miu J, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene. 2007;396(1):203–13. https://doi.org/10.1016/j.gene.2007.04.010.
Article
PubMed
CAS
Google Scholar
Metz R, Duhadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 2007;67(15):7082–7. https://doi.org/10.1158/0008-5472.CAN-07-1872.
Article
PubMed
CAS
Google Scholar
Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3. https://doi.org/10.1126/science.281.5380.1191.
Article
PubMed
CAS
Google Scholar
Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for Cancer immunotherapy - challenges and opportunities. Trends Pharmacol Sci. 2018;39(3):307–25. https://doi.org/10.1016/j.tips.2017.11.007.
Article
PubMed
CAS
Google Scholar
DEN C, Presicce F, Giacinti S, Bassanelli M. Tubaro a: castration-resistance prostate cancer: what is in the pipeline? Minerva Urol Nefrol. 2018;70(1):22–41. https://doi.org/10.23736/S0393-2249.17.02976-9.
Article
Google Scholar
Sartor O, de Bono JS. Metastatic prostate Cancer. N Engl J Med. 2018;378(7):645–57. https://doi.org/10.1056/NEJMra1701695.
Article
PubMed
CAS
Google Scholar
Mokbel K, Wazir U, Mokbel K. Chemoprevention of prostate Cancer by natural agents: evidence from molecular and epidemiological studies. Anticancer Res. 2019;39(10):5231–59. https://doi.org/10.21873/anticanres.13720.
Article
PubMed
CAS
Google Scholar
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13. https://doi.org/10.3389/fcimb.2018.00013.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schenk A, Esser T, Knoop A, Thevis M, Herden J, Heidenreich A, Bloch W, Joisten N, Zimmer P: Effect of a Single Bout of Aerobic Exercise on Kynurenine Pathway Metabolites and Inflammatory Markers in Prostate Cancer Patients-A Pilot Randomized Controlled Trial. Metabolites 2020, 11(1), Effect of a Single Bout of Aerobic Exercise on Kynurenine Pathway Metabolites and Inflammatory Markers in Prostate Cancer Patients—A Pilot Randomized Controlled Trial, 11, 1, doi: https://doi.org/10.3390/metabo11010004.
Prendergast GC, Malachowski WJ, Mondal A, Scherle P, Muller AJ. Indoleamine 2,3-Dioxygenase and its therapeutic inhibition in Cancer. Int Rev Cell Mol Biol. 2018;336:175–203. https://doi.org/10.1016/bs.ircmb.2017.07.004.
Article
PubMed
CAS
Google Scholar
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther. 2020;107746:107746. https://doi.org/10.1016/j.pharmthera.2020.107746.
Article
CAS
Google Scholar
Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frédérick R, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A. 2012;109(7):2497–502. https://doi.org/10.1073/pnas.1113873109.
Article
PubMed
PubMed Central
Google Scholar
Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203. https://doi.org/10.1038/nature10491.
Article
PubMed
CAS
Google Scholar
Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, et al. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature. 2007;446(7135):562–6. https://doi.org/10.1038/nature05683.
Article
PubMed
CAS
Google Scholar
Jaeger C, Tischkau SA. Role of aryl hydrocarbon receptor in circadian clock disruption and metabolic dysfunction. Environ Health Insights. 2016;10:133–41. https://doi.org/10.4137/EHI.S38343.
Article
PubMed
PubMed Central
Google Scholar
Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C, et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol. 2008;21(9):1156–67. https://doi.org/10.1038/modpathol.2008.111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Antonarakis ES, Keizman D, Zhang Z, Gurel B, Lotan TL, Hicks JL, et al. An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy. Cancer. 2012;118(24):6063–71. https://doi.org/10.1002/cncr.27689.
Article
PubMed
CAS
Google Scholar
Zadra G, Loda M: Metabolic Vulnerabilities of Prostate Cancer: Diagnostic and Therapeutic Opportunities. Cold Spring Harb Perspect Med 2018, 8(10), 8, 10, doi: https://doi.org/10.1101/cshperspect.a030569.
Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 2015;43:11–21. https://doi.org/10.1016/j.semcdb.2015.08.003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duan M, Hu F, Li D, Wu S, Peng N. Silencing KPNA2 inhibits IL-6-induced breast cancer exacerbation by blocking NF-κB signaling and c-Myc nuclear translocation in vitro. Life Sci. 2020;253:117736. https://doi.org/10.1016/j.lfs.2020.117736.
Article
PubMed
CAS
Google Scholar