Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 04 Nov 2020.
Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–43. https://doi.org/10.18632/oncotarget.16723.
Article
PubMed Central
Google Scholar
Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. Brit Med J. 2005;330(7503):1304–5. https://doi.org/10.1136/bmj.38415.708634.F7.
Article
PubMed
Google Scholar
Pecinova A, Brazdova A, Drahota Z, Houstek J, Mracek T. Mitochondrial targets of metformin - are they physiologically relevant? Biofactors. 2019;45(5):703–11. https://doi.org/10.1002/biof.1548.
Article
CAS
PubMed
Google Scholar
Meng SM, Cao J, He QY, Xiong LS, Chang E, Radovick S, et al. Metformin activates AMP-activated protein kinase by promoting formation of the alpha beta gamma Heterotrimeric complex. J Biol Chem. 2015;290(6):3793–802. https://doi.org/10.1074/jbc.M114.604421.
Article
CAS
PubMed
Google Scholar
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74. https://doi.org/10.1172/JCI13505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med. 1998;338(13):867–72. https://doi.org/10.1056/NEJM199803263381303.
Article
CAS
PubMed
Google Scholar
Polianskyte-Prause Z, Tolvanen TA, Lindfors S, Dumont V, Van M, Wang H, et al. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J. 2019;33(2):2858–69. https://doi.org/10.1096/fj.201800529RR.
Article
CAS
PubMed
Google Scholar
Sajan MP, Bandyopadhyay G, Miura A, Standaert ML, Nimal S, Longnus SL, et al. AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC. Am J Physiol-Endoc M. 2010;298(2):E179–E92.
CAS
Google Scholar
Seshasai SRK, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41.
Article
CAS
Google Scholar
Boyd DB. Insulin and cancer. Integr Cancer Ther. 2003;2(4):315–29. https://doi.org/10.1177/1534735403259152.
Article
CAS
PubMed
Google Scholar
Salani B, Marini C, Rio AD, Ravera S, Massollo M, Orengo AM, et al. Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Sci Rep. 2013;3(1). https://doi.org/10.1038/srep02070.
Marini C, Salani B, Massollo M, Amaro A, Esposito AI, Orengo AM, et al. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle. 2013;12(22):3490–9. https://doi.org/10.4161/cc.26461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia YL, Ma ZY, Liu XF, Zhou WJ, He S, Xu X, et al. Metformin prevents DMH-induced colorectal cancer in diabetic rats by reversing the Warburg effect. Cancer Med-Us. 2015;4(11):1730–41. https://doi.org/10.1002/cam4.521.
Article
CAS
Google Scholar
Harada K, Ferdous T, Harada T, Ueyama Y. Metformin in combination with 5-fluorouracil suppresses tumor growth by inhibiting the Warburg effect in human oral squamous cell carcinoma. Int J Oncol. 2016;49(1):276–84. https://doi.org/10.3892/ijo.2016.3523.
Article
CAS
PubMed
Google Scholar
Tang DH, Xu L, Zhang MM, Dorfman RG, Pan YD, Zhou Q, et al. Metformin facilitates BG45-induced apoptosis via an anti-Warburg effect in cholangiocarcinoma cells. Oncol Rep. 2018;39(4):1957–65. https://doi.org/10.3892/or.2018.6275.
Article
CAS
PubMed
Google Scholar
Coyle C, Cafferty FH, Vale C, Langley RE. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol. 2016;27(12):2184–95. https://doi.org/10.1093/annonc/mdw410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franciosi M, Lucisano G, Lapice E, Strippoli GFM, Pellegrini F, Nicolucci A. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PloS one. 2013;8(8):1–12.
Ajzashokouhi AH, Bostan HB, Jomezadeh V, Hayes AW, Karimi G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol. 2020;39(3):237–48. https://doi.org/10.1177/0960327119888277.
Article
CAS
PubMed
Google Scholar
Biernacka KM, Persad RA, Bahl A, Gillatt D, Holly JMP, Perks CM. Hyperglycaemia-induced resistance to Docetaxel is negated by metformin: a role for IGFBP-2. Endocr Relat Cancer. 2017;24(1):17–30. https://doi.org/10.1530/ERC-16-0095.
Article
CAS
PubMed
Google Scholar
Coperchini F, Leporati P, Rotondi M, Chiovato L. Expanding the therapeutic spectrum of metformin: from diabetes to cancer. J Endocrinol Investig. 2015;38(10):1047–55. https://doi.org/10.1007/s40618-015-0370-z.
Article
CAS
Google Scholar
Zhang Y, Feng XL, Li T, Yi EP, Li Y. Metformin synergistic pemetrexed suppresses non-small-cell lung cancer cell proliferation and invasion in vitro. Cancer Med-Us. 2017;6(8):1965–75. https://doi.org/10.1002/cam4.1133.
Article
CAS
Google Scholar
Zi FM, He JS, Li Y, Wu C, Yang L, Yang Y, et al. Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models. Cancer Lett. 2015;356(2 Pt B):443–53.
Article
CAS
Google Scholar
Moro M, Caiola E, Ganzinelli M, Zulato E, Rulli E, Marabese M, et al. Metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in co-mutated KRAS/LKB1 NSCLC. J Thorac Oncol. 2018;13(11):1692–704. https://doi.org/10.1016/j.jtho.2018.07.102.
Article
PubMed
Google Scholar
Janjetovic K, Vucicevic L, Misirkic M, Vilimanovich U, Tovilovic G, Zogovic N, et al. Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt. Eur J Pharmacol. 2011;651(1–3):41–50. https://doi.org/10.1016/j.ejphar.2010.11.005.
Article
CAS
PubMed
Google Scholar
Damelin LH, Jivan R, Veale RB, Rousseau AL, Mavri-Damelin D. Metformin induces an intracellular reductive state that protects oesophageal squamous cell carcinoma cells against cisplatin but not copper-bis(thiosemicarbazones). BMC Cancer. 2014;14:1–11.
Poburski D, Thierbach R. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies. Sci Rep. 2016;6(1):1–8.
Poburski D, Leovsky C, Boerner JB, Szimmtenings L, Ristow M, Glei M, et al. Insulin-IGF signaling affects cell transformation in the BALB/c 3T3 cell model. Sci Rep. 2016;6(1):1–12.
Sasaki K, Bohnenberger S, Hayashi K, Kunkelmann T, Muramatsu D, Phrakonkham P, et al. Recommended protocol for the BALB/c 3T3 cell transformation assay. Mutat Res. 2012;744(1):30–5. https://doi.org/10.1016/j.mrgentox.2011.12.014.
Article
CAS
PubMed
Google Scholar
Sasaki K, Bohnenberger S, Hayashi K, Kunkelmann T, Muramatsu D, Poth A, et al. Photo catalogue for the classification of foci in the BALB/c 3T3 cell transformation assay. Mutat Res. 2012;744(1):42–53. https://doi.org/10.1016/j.mrgentox.2012.01.009.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar
Glass GV, Peckham PD, Sanders JR. Consequences of failure to meet assumptions underlying fixed effects analyses of variance and covariance. Rev Educ Res. 1972;42(3):237–88. https://doi.org/10.3102/00346543042003237.
Article
Google Scholar
Harwell MR, Rubinstein EN, Hayes WS, Olds CC. Summarizing Monte-Carlo results in methodological research - the 1-factor and 2-factor fixed effects Anova cases. J Educ Stat. 1992;17(4):315–39. https://doi.org/10.3102/10769986017004315.
Article
Google Scholar
Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharma Res Per. 2015;3(3):e00149. https://doi.org/10.1002/prp2.149.
Article
Google Scholar
Vanparys P, Corvi R, Aardema MJ, Gribaldo L, Hayashi M, Hoffmann S, et al. Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics. Mutat Res-Gen Tox En. 2012;744(1):111–6. https://doi.org/10.1016/j.mrgentox.2012.02.001.
Article
CAS
Google Scholar
Zhao B, Luo J, Yu T, Zhou L, Lv H, Shang P. Anticancer mechanisms of metformin: a review of the current evidence. Life Sci. 2020;254:117717. https://doi.org/10.1016/j.lfs.2020.117717.
Article
CAS
PubMed
Google Scholar
Zhang K, Bai P, Dai H, Deng Z. Metformin and risk of cancer among patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Prim Care Diabetes. 2020;43(7):1650–8. https://doi.org/10.2337/dc19-1708.
Article
CAS
Google Scholar
Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther. 2013;93(2):186–94. https://doi.org/10.1038/clpt.2012.210.
Article
CAS
PubMed
Google Scholar
Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1994;24(1):49–57. https://doi.org/10.3109/00498259409043220.
Article
CAS
PubMed
Google Scholar
Iversen AB, Horsman MR, Jakobsen S, Jensen JB, Garm C, Jessen N, et al. Results from C-11-metformin-PET scans, tissue analysis and cellular drug-sensitivity assays questions the view that biguanides affects tumor respiration directly. Sci Rep-UK. 2017;7:1–13.
Gravel SP, Hulea L, Toban N, Birman E, Blouin MJ, Zakikhani M, et al. Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 2014;74(24):7521–33. https://doi.org/10.1158/0008-5472.CAN-14-2643-T.
Article
CAS
PubMed
Google Scholar
Shafa MH, Jalal R, Kosari N, Rahmani F. Efficacy of metformin in mediating cellular uptake and inducing apoptosis activity of doxorubicin. Regul Toxicol Pharmacol. 2018;99:200–12. https://doi.org/10.1016/j.yrtph.2018.09.023.
Article
CAS
Google Scholar
Kwon YS, Chun SY, Nan HY, Nam KS, Lee C, Kim S. Metformin selectively targets 4T1 tumorspheres and enhances the antitumor effects of doxorubicin by downregulating the AKT and STAT3 signaling pathways. Oncol Lett. 2019;17(2):2523–30. https://doi.org/10.3892/ol.2018.9827.
Article
CAS
PubMed
Google Scholar
Li Y, Luo J, Lin MT, Zhi P, Guo WW, You J, et al. Co-delivery of metformin enhances the antimultidrug resistant tumor effect of doxorubicin by improving hypoxic tumor microenvironment. Mol Pharm. 2019;16(7):2966–79. https://doi.org/10.1021/acs.molpharmaceut.9b00199.
Article
CAS
PubMed
Google Scholar
Li Y, Wang M, Zhi P, You J, Gao JQ. Metformin synergistically suppress tumor growth with doxorubicin and reverse drug resistance by inhibiting the expression and function of P-glycoprotein in MCF7/ADR cells and xenograft models. Oncotarget. 2018;9(2):2158–74. https://doi.org/10.18632/oncotarget.23187.
Article
PubMed
Google Scholar
Marinello PC, Pannis C, Silva TNX, Binato R, Abdelhay E, Rodrigues JA, et al. Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Sci Rep. 2019;9(1):5864. https://doi.org/10.1038/s41598-019-42357-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 2011;71(9):3196–201. https://doi.org/10.1158/0008-5472.CAN-10-3471.
Article
CAS
PubMed
PubMed Central
Google Scholar
He K, Hu H, Ye S, Wang H, Cui R, Yi L. The effect of metformin therapy on incidence and prognosis in prostate cancer: a systematic review and meta-analysis. Sci Rep. 2019;9(1):2218. https://doi.org/10.1038/s41598-018-38285-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayer MJ, Klotz LH, Venkateswaran V. Evaluating metformin as a potential chemosensitizing agent when combined with docetaxel chemotherapy in castration-resistant prostate cancer cells. Anticancer Res. 2017;37(12):6601–7. https://doi.org/10.21873/anticanres.12117.
Article
CAS
PubMed
Google Scholar
Mayer MJ, Klotz LH, Venkateswaran V. The effect of metformin use during docetaxel chemotherapy on prostate cancer specific and overall survival of diabetic patients with castration resistant prostate cancer. J Urol. 2017;197(4):1068–74. https://doi.org/10.1016/j.juro.2016.10.069.
Article
CAS
PubMed
Google Scholar
Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16(10):635–49. https://doi.org/10.1038/nrc.2016.77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paz MM. Reductive activation of mitomycin C by thiols: kinetics, mechanism, and biological implications. Chem Res Toxicol. 2009;22(10):1663–8. https://doi.org/10.1021/tx9002758.
Article
CAS
PubMed
Google Scholar
Damelin LH, Jivan R, Veale RB, Rousseau AL, Mavri-Damelin D. Metformin induces an intracellular reductive state that protects oesophageal squamous cell carcinoma cells against cisplatin but not copper-bis(thiosemicarbazones). BMC Cancer. 2014;14:314.
Article
Google Scholar