Chen C, Cao F-H, Li Z-G, Zhang L-G, Liu J, Chen N, et al. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data. Onco Targets Ther. 2016;1545. https://doi.org/10.2147/OTT.S98807.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.
Article
PubMed
Google Scholar
Ziaee S, Chu GCY, Huang JM, Sieh S, Chung LWK. Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol. 2015;4:438–54. https://doi.org/10.3978/j.issn.2223-4683.2015.04.10.
Article
PubMed
PubMed Central
Google Scholar
Luo P, Jiang Q, Fang Q, Wang Y, Wang Z, Yang J, et al. The human positive cofactor 4 promotes androgen-independent prostate cancer development and progression through HIF-1α/β-catenin pathway. Am J Cancer Res. 2019;9:682–98 http://www.ncbi.nlm.nih.gov/pubmed/31105996.
CAS
PubMed
PubMed Central
Google Scholar
Rawla P. Descriptive epidemiology of prostate Cancer. World J Oncol. 2019;10:63–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Q, Liu Z, Li Z, Chen J, Liao Z, Wu W, et al. TIPE2 overexpression suppresses the proliferation, migration, and invasion in prostate Cancer cells by inhibiting PI3K/Akt signaling pathway. Oncol Res Featur Preclin Clin Cancer Ther. 2016;24:305–13.
Google Scholar
Akinyeke T, Matsumura S, Wang X, Wu Y, Schalfer ED, Saxena A, et al. Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis. 2013;34:2823–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mei W, Lin X, Kapoor A, Gu Y, Zhao K, Tang D. The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis. Cancers (Basel). 2019;11:434.
Article
CAS
Google Scholar
Lima AR, Araújo AM, Pinto J, Jerónimo C, Henrique R, Bastos MDL, et al. Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS. Sci Rep. 2018;8:1–12.
Article
CAS
Google Scholar
Feldman BJ, Feldman D. The Development of Androgen-Independent Prostate Cancer. Nat Rev Cancer. 2001;1:34–45.
Article
CAS
PubMed
Google Scholar
Nevedomskaya E, Baumgart SJ, Haendler B. Recent advances in prostate Cancer treatment and drug discovery. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19051359.
Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.
Article
CAS
PubMed
Google Scholar
Curran S, Murray GI. Matrix Metalloproteinases in Tumour Invasion and Metastasis. J Pathol. 1999;308:300–8.
Article
Google Scholar
Fu Z, Smith PC, Zhang L, Rubin MA, Dunn RL, Yao Z, et al. Effects of Raf kinase inhibitor protein expression on metastasis and progression of human breast Cancer. J Natl Cancer Inst. 2003;95:878–89. https://doi.org/10.1158/1541-7786.MCR-08-0403.
Article
CAS
PubMed
Google Scholar
Liu L, Sun B, Pedersen JN, Aw Yong K-M, Getzenberg RH, Stone HA, et al. Probing the invasiveness of prostate cancer cells in a 3D microfabricated landscape. Proc Natl Acad Sci. 2011;108:6853–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klarmann G, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T, et al. Invasive prostate Cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis. 2009;26:433–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64:327–36.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay NK, Gordon GJ, Chen CJ, Bueno R, Sugarbaker DJ, Jaklitsch MT. Activation of focal adhesion kinase in human lung cancer cells involves multiple and potentially parallel signaling events. J Cell Mol Med. 2005;9:387–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michael KE, Dumbauld DW, Burns KL, Hanks SK, Garcia AJ. Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell. 2009;20:2508–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLean GW, Serrels B, Frame MC, Komiyama NH, Grant SGN, Asano H, et al. Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes Dev. 2004;18:2998–3003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lahlou H, Sanguin-Gendreau V, Zuo D, Cardiff RD, McLean GW, Frame MC, et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci. 2007;104:20302–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horton ER, Humphries JD, Stutchbury B, Jacquemet G, Ballestrem C, Barry ST, et al. Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol. 2016;212:349–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howe GA, Xiao B, Zhao H, Al-Zahrani KN, Hasim MS, Villeneuve J, et al. Focal adhesion kinase inhibitors in combination with erlotinib demonstrate enhanced anti-tumor activity in non-small cell lung cancer. PLoS One. 2016;11:1–20.
Google Scholar
Johnson TR, Khandrika L, Kumar B, Venezia S, Koul S, Chandhoke R, et al. Focal adhesion kinase controls aggressive phenotype of androgen-independent prostate Cancer. Mol Cancer Res. 2008;6:1639–48.
Article
CAS
PubMed
Google Scholar
Yoon H, Dehart JP, Murphy JM, Lim STS. Understanding the roles of FAK in Cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem. 2015;63:114–28.
Article
PubMed
CAS
Google Scholar
Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res. 2008;68:1935–44.
Article
CAS
PubMed
Google Scholar
Lin HM, Lee BY, Castillo L, Spielman C, Grogan J, Yeung NK, et al. Effect of FAK inhibitor VS-6063 (defactinib) on docetaxel efficacy in prostate cancer. Prostate. 2018;78:308–17.
Article
CAS
PubMed
Google Scholar
Schiewer MJ, Den R, Hoang DT, Augello MA, Lawrence YR, Dicker AP, et al. mTOR is a selective effector of the radiation therapy response in androgen receptor-positive prostate cancer. Endocr Relat Cancer. 2012;19:1–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edlind MP, Hsieh AC. PI3K - AKT - mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. October. 2014;2013:378–86.
Google Scholar
Tian T, Li X, Zhang J. mTOR signaling in cancer and mtor inhibitors in solid tumor targeting therapy. Int J Mol Sci. 2019;20:1–34.
Google Scholar
Crumbaker M, Khoja L, Joshua AM. AR signaling and the PI3K pathway in prostate Cancer. Cancers (Basel). 2017;9:1–15.
Article
CAS
Google Scholar
Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun. 2003;310:1124–32.
Article
CAS
PubMed
Google Scholar
Kaarbø M, Løveseter Ø, Malerød L, Qu S, Lobert VH, Akgul G, Halvorsen T, Maelandsmo GM, Saatcioglu F. PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Cell Oncol. 2010;32:11–27.
PubMed
PubMed Central
Google Scholar
Lilis I, Giopanou I, Papadaki H, Gyftopoulos K. The expression of p-mTOR and COUP-TFII correlates with increased lymphangiogenesis and lymph node metastasis in prostate adenocarcinoma. Urol Oncol Semin Orig Investig. 2018;36:311 e27–311.e35.
Google Scholar
Kremer CL, Klein RR, Mendelson J, Browne W, Samadzedeh LK, Vanpatten K, et al. Expression of mTOR signaling pathway markers in prostate Cancer progression. Prostate. 2006;66:1203–12.
Article
CAS
PubMed
Google Scholar
Zhu W, Hu X, Xu J, Cheng Y, Shao Y, Peng Y. Effect of PI3K/Akt signaling pathway on the process of prostate Cancer metastasis to bone. Cell Biochem Biophys. 2015;72:171–7. https://doi.org/10.1007/s12013-014-0433-3.
Article
CAS
PubMed
Google Scholar
Crawford Parks TE, Marcellus KA, Langill J, Ravel-chapuis A, Michaud J, Cowan KN, et al. Novel roles for Staufen1 in Embryonal and alveolar Rhabdomyosarcoma via c-myc- dependent and -independent events. Sci Rep. 2016;2017:1–15. https://doi.org/10.1038/srep42342.
Article
CAS
Google Scholar
Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron. 2004;43:513–25.
Article
CAS
PubMed
Google Scholar
Vessey JP, Macchi P, Stein JM, Mikl M, Hawker KN, Vogelsang P, et al. A loss of function allele for murine Staufen1 leads to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis. Proc Natl Acad Sci U S A. 2008;105:16374–9.
Article
PubMed
PubMed Central
Google Scholar
Kim YK, Furic L, Desgroseillers L, Maquat LE. Mammalian Staufen1 recruits Upf1 to specific mRNA 3’UTRs so as to elicit mRNA decay. Cell. 2005;120:195–208.
Article
CAS
PubMed
Google Scholar
Kim Y, Furic L, Parisien M, Major F, DesGroseillers L, Maquat LE. Staufen1 regulates diverse classes of mammalian transcripts. EMBO J. 2007;26:2670–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong C, Kim YK, Woeller CF, Tang Y, Maquat LE. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev. 2009;23:54–66. https://doi.org/10.1101/gad.1717309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dugré-Brisson S, Elvira G, Boulay K, Chatel-Chaix L, Mouland AJ, DesGroseillers L. Interaction of Staufen1 with the 5′ end of mRNA facilitates translation of these RNAs. Nucleic Acids Res. 2005;33:4797–812. https://doi.org/10.1093/nar/gki794.
Article
PubMed
PubMed Central
Google Scholar
Ricci EP, Kucukural A, Cenik C, Mercier BC, Singh G, Heyer EE, et al. Staufen1 senses overall transcript secondary structure to regulate translation (supplemental). Nat Publ Gr. 2013;21:26–35. https://doi.org/10.1038/nsmb.2739.
Article
CAS
Google Scholar
Ravel-Chapuis A, Crawford TE, Blais-Crépeau M-L, Bélanger G, Richer CT, Jasmin BJ. The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc-dependent mechanism. Mol Biol Cell. 2014;25:3765–78.
Article
PubMed
PubMed Central
Google Scholar
Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, Ambrogio AD, et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature. 2015;519:491–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Lucas S, Oliveros JC, Chagoyen M, Ortín J. Functional signature for the recognition of specific target mRNAs by human Staufen1 protein. Nucleic Acids Res. 2014;42:4516–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elbarbary RA, Li W, Tian B, Maquat LE. STAU1 binding 3′ UTR IRAlus complements nuclear retention to protect cells from PKR-mediated translational shutdown. Genes Dev. 2013;27:1495–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ravel-Chapuis A, Bélanger G, Yadava RS, Mahadevan MS, DesGroseillers L, Côté J, et al. The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. J Cell Biol. 2012;196:699–712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boulay K, Ghram M, Viranaicken W, Trépanier V, Mollet S, Fréchina C, et al. Cell cycle-dependent regulation of the RNA-binding protein Staufen1. Nucleic Acids Res. 2014;42:7867–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bondy-Chorney E, Crawford Parks TE, Ravel-Chapuis A, Klinck R, Rocheleau L, Pelchat M, et al. Staufen1 regulates multiple alternative splicing events either positively or negatively in DM1 indicating its role as a disease modifier. PLoS Genet. 2016;12:e1005827.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu TP, Liu XX, Xia R, Yin L, Kong R, Chen WM, et al. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene. 2015;34:5648–61.
Article
CAS
PubMed
Google Scholar
Xu TP, Wang YF, Xiong WL, Ma P, Wang WY, Chen WM, et al. E2F1 induces TINCR transcriptional activity and accelerates gastric cancer progression via activation of TINCR/STAU1/CDKN2B signaling axis. Cell Death Dis. 2017;8:e2837. https://doi.org/10.1038/cddis.2017.205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghram M, Bonnet-Magnaval F, Hotea DI, Doran B, Ly S, DesGroseillers L. Staufen1 is essential for cell-cycle transitions and cell proliferation via the control of E2F1 expression. J Mol Biol. 2020;432:3881–97.
Article
CAS
PubMed
Google Scholar
Hassine S, Bonnet-Magnaval F, Benoit Bouvrette LP, Doran B, Ghram M, Bouthillette M, et al. Staufen1 localizes to the mitotic spindle and controls the localization of RNA populations to the spindle. J Cell Sci. 2020;133:1–14.
Article
CAS
Google Scholar
Yang C, Zheng J, Liu X, Xue Y, He Q, Dong Y, et al. Role of ANKHD1/LINC00346/ZNF655 Feedback Loop in Regulating the Glioma Angiogenesis via Staufen1-Mediated mRNA Decay. Mol Ther - Nucleic Acids. 2020;20:866–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Chen Z, Fan R, Jiang B, Chen X, Chen Q, et al. Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Mol Cancer. 2017;16:1–9.
Article
CAS
Google Scholar
Damas ND, Marcatti M, Côme C, Christensen LL, Nielsen MM, Baumgartner R, et al. SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nat Commun. 2016;7:1–14. https://doi.org/10.1038/ncomms13875.
Article
CAS
Google Scholar
Sobel RE, Wang Y, Sadar MD. Molecular analysis and characterization of PrEC, commercially available prostate epithelial cells. Vitr Cell Dev Biol. 2006;42:33–9.
Article
CAS
Google Scholar
Cunningham D, Zongbing Y. In vitro and in vivo model systems used in prostate cancer research. J Biol Methods. 2015;2:1–28.
Article
Google Scholar
Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old and new lines - part 1. J Urol. 2005;173:342–59.
Article
CAS
PubMed
Google Scholar
Namekawa T, Ikeda K, Horie-Inoue K, Inoue S. Application of prostate Cancer models for preclinical study: advantages and limitations of cell lines, patient-derived Xenografts, and three-dimensional culture of patient-derived cells. Cells. 2019;8:1–27.
Article
CAS
Google Scholar
Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang C, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011;71:1668–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horoszewicz JS, Leong SS, Kawinski E, Horoszewicz JS, Leong SS, Kawinski E, et al. LNCaP Model of Human Prostatic Carcinoma LNCaP Model of Human Prostatic Carcinoma. Cancer Res. 1983;43:1809–18.
CAS
PubMed
Google Scholar
Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357:1–11.
Article
CAS
Google Scholar
Burke AMYJ, Ali H, O’Connell E, Sullivan FJ, Glynn SA. Sensitivity profiles of human prostate Cancer cell lines to an 80 kinase inhibitor panel. Anticancer Res. 2016;36:633–42.
CAS
PubMed
Google Scholar
Sumitomo M, Shen R, Walburg M, Dai J, Geng Y, Navarro D, et al. Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling. J Clin Invest. 2000;106:1399–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143:3050–60.
Article
CAS
PubMed
Google Scholar
Mori S, Nada S, Kimura H, Tajima S, Takahashi Y, Kitamura A, et al. The mTOR pathway controls cell proliferation by regulating the FoxO3a transcription factor via SGK1 kinase. PLoS One. 2014;9:1–12.
Google Scholar
Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci. 2013;126:1713–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cargnello M, Tcherkezian J, Roux PP. The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis. 2015;30:169–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dowling RJO, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, et al. mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs. Science. 2010;328:1172–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutherland M, Gordon A, Shnyder SD, Patterson LH, Sheldrake HM. RGD-binding integrins in prostate cancer: expression patterns and therapeutic prospects against bone metastasis. Cancers (Basel). 2012;4:1106–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wadosky KM, Koochekpour S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget. 2016;7:1–24.
Article
Google Scholar
Zhang S, Gera L, Mamouni K, Li X, Chen Z, Kucuk O, et al. Inhibition of skeletal growth of human prostate cancer by the combination of docetaxel and BKM1644: an aminobisphosphonate derivative. Oncotarget. 2016;7:1–10.
Article
Google Scholar
Liu P, Liang Y, Jiang L, Wang H, Wang S, Dong J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol. 2018;53:1544–56.
CAS
PubMed
PubMed Central
Google Scholar
Deramaudt TB, Dujardin D, Noulet F, Martin S, Vauchelles R, Takeda K, et al. Altering FAK-paxillin interactions reduces adhesion, migration and invasion processes. PLoS One. 2014;9:1–13.
Article
CAS
Google Scholar
Hauck CR, Hsia DA, Schlaepfer DD. The focal adhesion kinase - a regulator of cell migration and invasion. Life. 2002;53:115–9.
CAS
PubMed
Google Scholar
Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, et al. Differential regulation of cell motility and invasion by FAK. J Cell Biol. 2003;160:753–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolli-Bouhafs K, Sick E, Noulet F, Gies JP, De Mey J, Rondé P. FAK competes for Src to promote migration against invasion in melanoma cells. Cell Death Dis. 2014;5:1–10.
Article
CAS
Google Scholar
Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int. 2015;2015:1–13.
Google Scholar
Figel S, Gelman IH. Focal adhesion kinase control prostate Cancer progression via intrinsic kinase and scaffolding functions. Anti Cancer Agents Med Chem. 2011;11:607–16.
Article
CAS
Google Scholar
Crawford Parks TE, Ravel-chapuis A, Bondy-chorney E, Renaud J, Côté J, Jasmin BJ. Muscle-specific expression of the RNA-binding protein Staufen1 induces progressive skeletal muscle atrophy via regulation of phosphatase tensin homolog. Hum Mol Genet. 2017;26:1821–38.
Article
PubMed
CAS
Google Scholar
Ricci EP, Kucukural A, Cenik C, Mercier BC, Singh G, Heyer EE, et al. Staufen1 senses overall transcript secondary structure to regulate translation. Nat Struct Mol Biol. 2013. https://doi.org/10.1038/nsmb.2739.
Bélanger G, Stocksley MA, Vandromme M, Schaeffer L, Furic L, DesGroseillers L, et al. Localization of the RNA-binding proteins Staufen1 and Staufen2 at the mammalian neuromuscular junction. J Neurochem. 2003;86:669–77.
Article
PubMed
CAS
Google Scholar
Yamaguchi Y, Oohinata R, Naiki T, Irie K. Stau1 negatively regulates myogenic differentiation in C2C12 cells. Genes Cells. 2008;13:583–92.
Article
CAS
PubMed
Google Scholar
Yamaguchi Y, Naiki T, Irie K. Stau1 regulates Dvl2 expression during myoblast differentiation. Biochem Biophys Res Commun. 2012;417:427–32.
Article
CAS
PubMed
Google Scholar
de Morrée A, van Velthoven CTJ, Gan Q, Salvi JS, Klein JDD, Akimenko I, et al. Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. Proc Natl Acad Sci. 2017;114:E8996–9005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ravel-Chapuis A, Gunnewiek AK, Belanger G, Crawford Parks TE, Cote J, Jasmin BJ. Staufen1 impairs stress granule formation in skeletal muscle cells from Myotonic dystrophy type 1 patients. Mol Biol Cell. 2016;27:1728–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul S, Dansithong W, Figueroa KP, Scoles DR, Pulst SM. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun. 2018;9:E8996-9005.
Google Scholar
Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, et al. Genetic dissection of the oncogenic mTOR pathway reveals Druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell. 2010;17:249–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39(SUPPL. 1):945–50.
Article
CAS
Google Scholar
Hsieh A, Edlind M. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl. 2014;16:378.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, et al. Molecular characterization of human prostate carcinoma cell lines. Prostate. 2003;57:205–25.
Article
PubMed
CAS
Google Scholar
Hudes G, O’Toole T, Tomczak P, Bodrogi I, Sosman J, Kapoor A, et al. Temsirolimus, interferon Alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.
Article
CAS
PubMed
Google Scholar
Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372:449–56.
Article
CAS
PubMed
Google Scholar
Maira S-M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7:1851–63.
Article
CAS
PubMed
Google Scholar
Wallin JJ, Edgar KA, Guan J, Berry M, Prior WW, Lee L, et al. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in Cancer models driven by the PI3K pathway. Mol Cancer Ther. 2011;10:2426–36.
Article
CAS
PubMed
Google Scholar
Li J, Kim G, Blenis J. Rapamycin: one drug, many effects an introduction to rapamycin: history and mechanism of action. Cell Metab. 2014;19:373–9. https://doi.org/10.1016/j.cmet.2014.01.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE, et al. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res. 2010;70:621–31.
Article
CAS
PubMed
Google Scholar
Falcon BL, Barr S, Gokhale P, Chou J, Fogarty J, Depeille P, et al. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res. 2011;71:1573–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10:868–80. https://doi.org/10.1038/nrd3531.
Article
CAS
PubMed
Google Scholar
García-Martínez JM, Alessi DR, Moran J, Clarke RG, Gray A, Cosulich SC, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 2009;421:29–42.
Article
PubMed
CAS
Google Scholar
Nakabayashi M, Werner L, Courtney KD, Buckle G, Oh WK, Bubley GJ, et al. Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer. BJU Int. 2012;110:1729–35.
Article
CAS
PubMed
Google Scholar
Templeton AJ, Rothermundt C, Gillessen S, Dutoit V, Dietrich P-Y, Cathomas R, et al. Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08). Eur Urol. 2013;64:150–8.
Article
CAS
PubMed
Google Scholar
Statz CM, Patterson SE, Mockus SM. mTOR inhibitors in castration-resistant prostate Cancer: a systematic review. Target Oncol. 2017;12:47–59. https://doi.org/10.1007/s11523-016-0453-6.
Article
PubMed
Google Scholar
Hensley PJ, Desiniotis A, Wang C, Stromberg A, Chen CS, Kyprianou N. Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PLoS One. 2014;9:150–8.
Article
CAS
Google Scholar
Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. J Exp Clin Cancer Res. 2019;38:1–11.
Article
CAS
Google Scholar
Zeng ZZ, Jia Y, Hahn NJ, Markwart SM, Rockwood KF, Livant DL. Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res. 2006;66:8091–9.
Article
CAS
PubMed
Google Scholar
Yang D-J, Wang X-L, Ismail A, Ashman CJ, Valori CF, Wang G, et al. PTEN regulates AMPA receptor-mediated cell viability in iPS-derived motor neurons. Cell Death Dis. 2014;5:e1096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slack JK, Stoker CE, Parsons JT, Adams RB, Rovin JD, Bissonette EA. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene. 2001;20:1152–63.
Article
CAS
PubMed
Google Scholar
Huang YT, Lee LT, Lee PPH, Lin YS, Lee MT. Targeting of focal adhesion kinase by flavonoids and small-interfering RNAs reduces tumor cell migration ability. Anticancer Res. 2005;25 3 B:2017–25.
Google Scholar
Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C, et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem. 2007;282:14845–52.
Article
CAS
PubMed
Google Scholar
Qing S, Hjelmeland AB, Keir ST, Song L, Wickman S, Dowdy J, et al. A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, Inhibits Glioma Growth. Mol Carcinog. 2007;46:488–96.
Article
CAS
Google Scholar
Tanjoni I, Walsh C, Uryu S, Tomar A, Nam J-O, Mielgo A, et al. PND-1186 FAK inhibitor selectively promotes tumour cell apoptosis in three-dimensional environments. Cancer Biol Ther. 2010;9:764–77.
Article
CAS
PubMed
Google Scholar
Walsh C, Tanjoni I, Uryu S, Tomar A, Nam J, Luo H, et al. Oral delivery of PND-1186 FAK inhibitor decreases tumor growth and spontaneous breast to lung metastasis in pre-clinical models. Cancer Biol Ther. 2010;9:778–90.
Article
CAS
PubMed
Google Scholar
Stokes JB, Adair SJ, Slack-Davis JK, Walters DM, Tilgham RW, Hershey ED, et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic Cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther. 2011;10:2135–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golubovskaya V, Sumbler B, Ho B, Yemma M, Cance W. MiR-138 and MiR-135 directly target focal adhesion kinase, inhibit cell invasion, and increase sensitivity to chemotherapy in Cancer cells. Anti Cancer Agents Med Chem. 2014;14:18–28.
Article
CAS
Google Scholar
Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery. 2004;135:555–62.
Article
CAS
PubMed
Google Scholar
Yu DH, Qu CK, Henegariu O, Lu X, Feng GS. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem. 1998;273:21125–31.
Article
CAS
PubMed
Google Scholar
Huveneers S, Danen EHJ. Adhesion signaling - crosstalk between integrins. Src and Rho J Cell Sci. 2009;122:1059–69.
Article
CAS
PubMed
Google Scholar
Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18:516–23.
Article
CAS
PubMed
Google Scholar