Greenberg MS. Handbook of neurosurgery. 7 th; 2006.
Google Scholar
Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61:215–25 discussion 226–9.
Article
PubMed
Google Scholar
Kumar V, Abbas AK, Fausto N, Aster JC. Robbins & Cotran Pathologic Basis of disease E-book. Elsevier Health Sciences; 2009.
Google Scholar
Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.
Article
CAS
PubMed
Google Scholar
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.
Article
CAS
PubMed
Google Scholar
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of Tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. https://doi.org/10.1007/s00401-007-0243-4.
Article
PubMed
PubMed Central
Google Scholar
Cheshier SH, Kalani MYS, Lim M, Ailles L, Huhn SL, Weissman IL. A neurosurgeon’s guide to stem cells, cancer stem cells. and brain tumor stem cells. Neurosurgery. 2009;65:237–50. https://doi.org/10.1227/01.neu.0000349921.14519.2a.
Article
PubMed
Google Scholar
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.
Article
CAS
PubMed
Google Scholar
Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene. 2004;23:7267–73.
Article
CAS
PubMed
Google Scholar
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.
CAS
PubMed
Google Scholar
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.
Article
CAS
PubMed
Google Scholar
Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, et al. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res. 2010;16:2715–28.
Article
CAS
PubMed
Google Scholar
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.
Article
CAS
PubMed
Google Scholar
Binder DK, Berger MS. Proteases and the biology of glioma invasion. J Neurooncol. 2002;56:149–58.
Article
PubMed
Google Scholar
Bolteus AJ, Berens ME, Pilkington GJ. Migration and invasion in brain neoplasms. Curr Neurol Neurosci Rep. 2001;1:225–32.
Article
CAS
PubMed
Google Scholar
Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21:1624–36.
Article
CAS
PubMed
Google Scholar
Giese A, Laube B, Zapf S, Mangold U, Westphal M. Glioma cell adhesion and migration on human brain sections. Anticancer Res. 1998;18:2435–47.
CAS
PubMed
Google Scholar
Dandy WE. Removal of right cerebral hemisphere for certain tumors with hemiplegia: preliminary report. JAMA. 1928;90:823–5.
Article
Google Scholar
James GW. Removal of the right cerebral hemisphere for infiltrating glioma: report of a case. JAMA. 1933;101:823–6.
Article
Google Scholar
Jafri NF, Clarke JL, Weinberg V, Barani IJ, Cha S. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro-Oncology. 2013;15:91–6.
Article
CAS
PubMed
Google Scholar
Matsukado Y, Maccarty CS, Kernohan JW. The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice. J Neurosurg. 1961;18:636–44.
Article
CAS
PubMed
Google Scholar
Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ALA-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93:1003–13.
Article
CAS
PubMed
Google Scholar
Zagzag D, Esencay M, Mendez O, Yee H, Smirnova I, Huang Y, et al. Hypoxia- and vascular endothelial growth factor-induced stromal cell-derived factor-1α/CXCR4 expression in Glioblastomas. Am J Pathol. 2008;173:545–60. https://doi.org/10.2353/ajpath.2008.071197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zollinger R. Removal of left cerebral hemisphere: report of a case. Arch NeurPsych. 1935;34:1055–64.
Article
Google Scholar
Scherer HJ. The forms of growth in gliomas and their practical significance. Brain. 1940; https://academic.oup.com/brain/article-abstract/63/1/1/263743.
Zarco N, Norton E, Quiñones-Hinojosa A, Guerrero-Cázares H. Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cell Mol Life Sci. 2019;76:3553–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolodkin AL, Matthes DJ, Goodman CS. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell. 1993;75:1389–99.
Article
CAS
PubMed
Google Scholar
Kolodkin AL, Matthes DJ, O’Connor TP, Patel NH, Admon A, Bentley D, et al. Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron. 1992;9:831–45.
Article
CAS
PubMed
Google Scholar
Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. 1993;75:217–27.
Article
CAS
PubMed
Google Scholar
Messersmith EK, David Leonardo E, Shatz CJ, Tessier-Lavigne M, Goodman CS, Kolodkin AL. Sernaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron. 1995;14:949–59. https://doi.org/10.1016/0896-6273(95)90333-x.
Article
CAS
PubMed
Google Scholar
Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274:1123–33.
Article
CAS
PubMed
Google Scholar
Gherardi E, Love CA, Esnouf RM, Jones EY. The sema domain. Curr Opin Struct Biol. 2004;14:669–78.
Article
CAS
PubMed
Google Scholar
Koppel AM, Feiner L, Kobayashi H, Raper JA. A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron. 1997;19:531–7.
Article
CAS
PubMed
Google Scholar
He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell. 1997;90:739–51.
Article
CAS
PubMed
Google Scholar
Kitsukawa T, Shimizu M, Sanbo M, Hirata T, Taniguchi M, Bekku Y, et al. Neuropilin–Semaphorin III/D-mediated Chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron. 1997;19:995–1005. https://doi.org/10.1016/s0896-6273(00)80392-x.
Article
CAS
PubMed
Google Scholar
Kolodkin AL, Levengood DV, Rowe EG, Tai Y-T, Giger RJ, Ginty DD. Neuropilin is a Semaphorin III receptor. Cell. 1997;90:753–62. https://doi.org/10.1016/s0092-8674(00)80535-8.
Article
CAS
PubMed
Google Scholar
Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer. 2008;8:632–45.
Article
CAS
PubMed
Google Scholar
Nakamura F, Goshima Y. Structural and functional relation of Neuropilins. Neuropilin. 2002:55–69. https://doi.org/10.1007/978-1-4615-0119-0_5.
Rohm B, Rahim B, Kleiber B, Hovatta I, Püschel AW. The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett. 2000;486:68–72. https://doi.org/10.1016/s0014-5793(00)02240-7.
Article
CAS
PubMed
Google Scholar
Schmidt EF, Strittmatter SM. The CRMP family of proteins and their role in Sema3A signaling. In: Advances in experimental medicine and biology. p. 1–11. https://doi.org/10.1007/978-0-387-70956-7_1.
Winberg ML, Noordermeer JN, Tamagnone L, Comoglio PM, Spriggs MK, Tessier-Lavigne M, et al. Plexin a is a neuronal Semaphorin receptor that controls axon guidance. Cell. 1998;95:903–16. https://doi.org/10.1016/s0092-8674(00)81715-8.
Article
CAS
PubMed
Google Scholar
Tamagnone L, Artigiani S, Chen H, He Z, Ming G-L, Song H-J, et al. Plexins are a large family of receptors for Transmembrane, secreted, and GPI-anchored Semaphorins in vertebrates. Cell. 1999;99:71–80. https://doi.org/10.1016/s0092-8674(00)80063-x.
Article
CAS
PubMed
Google Scholar
Bagnard D, Vaillant C, Khuth S-T, Dufay N, Lohrum M, Püschel AW, et al. Semaphorin 3A–vascular endothelial growth Factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci. 2001;21:3332–41. https://doi.org/10.1523/jneurosci.21-10-03332.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guttmann-Raviv N, Shraga-Heled N, Varshavsky A, Guimaraes-Sternberg C, Kessler O, Neufeld G. Semaphorin-3A and semaphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. J Biol Chem. 2007;282:26294–305.
Article
CAS
PubMed
Google Scholar
Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature. 2003;424:391–7. https://doi.org/10.1038/nature01784.
Article
CAS
PubMed
Google Scholar
Neufeld G, Lange T, Varshavsky A, Kessler O. Semaphorin signaling in vascular and tumor biology. In: Advances in experimental medicine and biology. p. 118–31. https://doi.org/10.1007/978-0-387-70956-7_10.
Fan J, Raper JA. Localized collapsing cues can steer growth cones without inducing their full collapse. Neuron. 1995;14:263–74. https://doi.org/10.1016/0896-6273(95)90284-8.
Article
CAS
PubMed
Google Scholar
Klostermann A, Lohrum M, Adams RH, Püschel AW. The Chemorepulsive activity of the axonal guidance signal Semaphorin D requires dimerization. J Biol Chem. 1998;273:7326–31. https://doi.org/10.1074/jbc.273.13.7326.
Article
CAS
PubMed
Google Scholar
Polleux F, Morrow T, Ghosh A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature. 2000;404:567–73. https://doi.org/10.1038/35007001.
Article
CAS
PubMed
Google Scholar
Püschel AW, Adams RH, Betz H. Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron. 1995;14:941–8. https://doi.org/10.1016/0896-6273(95)90332-1.
Article
PubMed
Google Scholar
Song H. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science. 1998;281:1515–8. https://doi.org/10.1126/science.281.5382.1515.
Article
CAS
PubMed
Google Scholar
Campbell DS, Holt CE. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron. 2003;37:939–52.
Article
CAS
PubMed
Google Scholar
Jacob L, Sawma P, Garnier N, Meyer LAT, Fritz J, Hussenet T, et al. Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide. Oncotarget. 2016;7:57851–65.
Article
PubMed
PubMed Central
Google Scholar
McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF. Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol. 2003;23:216–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG. Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene. 2009;28:3537–50. https://doi.org/10.1038/onc.2009.204.
Article
CAS
PubMed
Google Scholar
Chen X, Zhang M, Gan H, Wang H, Lee J-H, Fang D, et al. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun. 2018;9:2949.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carlson BL, Pokorny JL, Schroeder MA, Sarkaria JN. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr Protoc Pharmacol. 2011;Chapter 14:Unit 14.16.
PubMed
Google Scholar
Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput Sci. 2016;2:e67.
Article
Google Scholar
Higgins DM, Wang R, Milligan B, Schroeder M, Carlson B, Pokorny J, et al. Brain tumor stem cell multipotency correlates with nanog expression and extent of passaging in human glioblastoma xenografts. Oncotarget. 2013;4:792–801.
Article
PubMed
PubMed Central
Google Scholar
Sabag AD, Bode J, Fink D, Kigel B, Kugler W, Neufeld G. Semaphorin-3D and Semaphorin-3E inhibit the development of tumors from Glioblastoma cells implanted in the cortex of the brain. PLoS One. 2012;7:e42912. https://doi.org/10.1371/journal.pone.0042912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Treps L, Edmond S, Harford-Wright E, Galan-Moya EM, Schmitt A, Azzi S, et al. Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene. 2016;35:2615–23.
Article
CAS
PubMed
Google Scholar
Nasarre C, Koncina E, Labourdette G, Cremel G, Roussel G, Aunis D, et al. Neuropilin-2 acts as a modulator of Sema3A-dependent glioma cell migration. Cell Adh Migr. 2009;3:383–9. https://doi.org/10.4161/cam.3.4.9934.
Article
PubMed
PubMed Central
Google Scholar
Rizzolio S, Rabinowicz N, Rainero E, Lanzetti L, Serini G, Norman J, et al. Neuropilin-1-dependent regulation of EGF-receptor signaling. Cancer Res. 2012;72:5801–11. https://doi.org/10.1158/0008-5472.can-12-0995.
Article
CAS
PubMed
Google Scholar
Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of cancer stem cells: function in Stemness, tumorigenesis, and metastasis. Neoplasia. 2018;20:813–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frankel P, Pellet-Many C, Lehtolainen P, D’Abaco GM, Tickner ML, Cheng L, et al. Chondroitin sulphate-modified neuropilin 1 is expressed in human tumour cells and modulates 3D invasion in the U87MG human glioblastoma cell line through a p130Cas-mediated pathway. EMBO Rep. 2008;9:983–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colman H, Zhang L, Sulman EP, McDonald JM, Shooshtari NL, Rivera A, et al. A multigene predictor of outcome in glioblastoma. Neuro-Oncology. 2010;12:49–57. https://doi.org/10.1093/neuonc/nop007.
Article
CAS
PubMed
Google Scholar
Network TCGAR, The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8. https://doi.org/10.1038/nature07385.
Article
CAS
Google Scholar