Barnes LD, Garrison PN, Siprashvili Z, Guranowski A, Robinson AK, Ingram SW, et al. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5′,5‴-P1, P3-triphosphate hydrolase. Biochemistry. 1996;35(36):11529–35.
Article
CAS
PubMed
Google Scholar
Pekarsky Y, Zanesi N, Palamarchuk A, Huebner K, Croce CM. FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol. 2002;3(12):748–54.
Article
CAS
PubMed
Google Scholar
Ji L, Fang B, Yen N, Fong K, Minna JD, Roth JA. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res. 1999;59(14):3333–9.
CAS
PubMed
Google Scholar
Roz L, Gramegna M, Ishii H, Croce CM, Sozzi G. Restoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in lung and cervical cancer cell lines. Proc Natl Acad Sci U S A. 2002;99(6):3615–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Siprashvili Z, Sozzi G, Barnes LD, McCue P, Robinson AK, Eryomin V, et al. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A. 1997;94(25):13771–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Waters CE, Saldivar JC, Hosseini SA, Huebner K. The FHIT gene product: tumor suppressor and genome “caretaker”. Cell Mol Life Sci. 2014;71(23):4577–87.
Article
CAS
PubMed
Google Scholar
Karras JR, Paisie CA, Huebner K. Replicative stress and the FHIT gene: roles in tumor suppression, genome stability and prevention of carcinogenesis. Cancers (Basel). 2014;6(2):1208–19.
Article
CAS
Google Scholar
Saldivar JC, Miuma S, Bene J, Hosseini SA, Shibata H, Sun J, et al. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet. 2012;8(11):e1003077.
Article
PubMed Central
CAS
PubMed
Google Scholar
Joannes A, Bonnomet A, Bindels S, Polette M, Gilles C, Burlet H, et al. Fhit regulates invasion of lung tumor cells. Oncogene. 2010;29(8):1203–13.
Article
CAS
PubMed
Google Scholar
Pace HC, Garrison PN, Robinson AK, Barnes LD, Draganescu A, Rosler A, et al. Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. Proc Natl Acad Sci U S A. 1998;95(10):5484–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weiske J, Albring KF, Huber O. The tumor suppressor Fhit acts as a repressor of β-catenin transcriptional activity. Proc Natl Acad Sci U S A. 2007;104(51):20344–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Trapasso F, Pichiorri F, Gaspari M, Palumbo T, Aqeilan RI, Gaudio E, et al. Fhit interaction with ferredoxin reductase triggers generation of reactive oxygen species and apoptosis of cancer cells. J Biol Chem. 2008;283(20):13736–44.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pekarsky Y, Garrison PN, Palamarchuk A, Zanesi N, Aqeilan RI, Huebner K, et al. Fhit is a physiological target of the protein kinase Src. Proc Natl Acad Sci U S A. 2004;101(11):3775–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shi Y, Zou M, Farid NR, Paterson MC. Association of FHIT (fragile histidine triad), a candidate tumour suppressor gene, with the ubiquitin-conjugating enzyme hUBC9. Biochem J. 2000;352(Pt 2):443–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zuo H, Chan GP, Zhu J, Yeung WW, Chan AS, Ammer H, et al. Activation state-dependent interaction between Gαq subunits and the Fhit tumor suppressor. Cell Commun Signal. 2013;11:59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12(5):775–83.
Article
CAS
PubMed
Google Scholar
Hubbard KB, Hepler JR. Cell signalling diversity of the Gqα family of heterotrimeric G proteins. Cell Signal. 2006;18(2):135–50.
Article
CAS
PubMed
Google Scholar
Sanchez-Fernandez G, Cabezudo S, Garcia-Hoz C, Beninca C, Aragay AM, Mayor Jr F, et al. Gαq signalling: the new and the old. Cell Signal. 2014;26(5):833–48.
Article
CAS
PubMed
Google Scholar
Nakagawa Y, Akao Y. Fhit protein inhibits cell growth by attenuating the signaling mediated by nuclear factor-kappaB in colon cancer cell lines. Exp Cell Res. 2006;312(13):2433–42.
Article
CAS
PubMed
Google Scholar
Liu AM, Wong YH. G16-mediated activation of nuclear factor κB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling. J Biol Chem. 2004;279(51):53196–204.
Article
CAS
PubMed
Google Scholar
Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 2007;213(3):589–602.
Article
CAS
PubMed
Google Scholar
New DC, Wong YH. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal. 2007;2:2.
Article
PubMed Central
PubMed
Google Scholar
Zuo H, Chan AS, Ammer H, Wong YH. Activation of Gαq subunits up-regulates the expression of the tumor suppressor Fhit. Cell Signal. 2013;25(12):2440–52.
Article
CAS
PubMed
Google Scholar
Tsu RC, Chan JS, Wong YH. Regulation of multiple effectors by the cloned δ-opioid receptor: stimulation of phospholipase C and type II adenylyl cyclase. J Neurochem. 1995;64(6):2700–7.
Article
CAS
PubMed
Google Scholar
Waldo GL, Ricks TK, Hicks SN, Cheever ML, Kawano T, Tsuboi K, et al. Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science. 2010;330(6006):974–80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heximer SP, Watson N, Linder ME, Blumer KJ, Hepler JR. RGS2/G0S8 is a selective inhibitor of Gαq function. Proc Natl Acad Sci U S A. 1997;94(26):14389–93.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lutz S, Shankaranarayanan A, Coco C, Ridilla M, Nance MR, Vettel C, et al. Structure of Gαq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science. 2007;318(5858):1923–7.
Article
CAS
PubMed
Google Scholar
Lyon AM, Taylor VG, Tesmer JJ. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol Sci. 2014;35(1):23–30.
Article
CAS
PubMed
Google Scholar
Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T, Tesmer JJ. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gβγ complex. Science. 2005;310(5754):1686–90.
Article
CAS
PubMed
Google Scholar
Giguere P, Rochdi MD, Laroche G, Dupre E, Whorton MR, Sunahara RK, et al. ARF6 activation by Gαq signaling: Gαq forms molecular complexes with ARNO and ARF6. Cell Signal. 2006;18(11):1988–94.
Article
CAS
PubMed
Google Scholar
Runnels LW, Scarlata SF. Determination of the affinities between heterotrimeric G protein subunits and their phospholipase C-β effectors. Biochemistry. 1999;38(5):1488–96.
Article
CAS
PubMed
Google Scholar
Bertagnolo V, Benedusi M, Querzoli P, Pedriali M, Magri E, Brugnoli F, et al. PLC-β2 is highly expressed in breast cancer and is associated with a poor outcome: a study on tissue microarrays. Int J Oncol. 2006;28(4):863–72.
CAS
PubMed
Google Scholar
Bertagnolo V, Benedusi M, Brugnoli F, Lanuti P, Marchisio M, Querzoli P, et al. Phospholipase C-β2 promotes mitosis and migration of human breast cancer-derived cells. Carcinogenesis. 2007;28(8):1638–45.
Article
CAS
PubMed
Google Scholar
Poli A, Faenza I, Chiarini F, Matteucci A, McCubrey JA, Cocco L. K562 cell proliferation is modulated by PLCβ1 through a PKCα-mediated pathway. Cell Cycle. 2013;12(11):1713–21.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xiao W, Hong H, Kawakami Y, Kato Y, Wu D, Yasudo H, et al. Tumor suppression by phospholipase C-β3 via SHP-1-mediated dephosphorylation of Stat5. Cancer Cell. 2009;16(2):161–71.
Article
PubMed Central
CAS
PubMed
Google Scholar