Wang S, Liu Q, Zhang Y, Liu K, Yu P, Liu K, et al. Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer. 2009;8:81.
Article
PubMed
PubMed Central
Google Scholar
Kamath R, Mahajan KS, Ashok L, Sanal TS. A study on risk factors of breast cancer among patients attending the tertiary care hospital, in Udipi district. Indian J Community Med. 2013;38:95–9.
Article
PubMed
PubMed Central
Google Scholar
Podo F, Buydens LM, Degani H, Hilhorst R, Klipp E, Gribbestad IS, et al. Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol. 2010;4:209–29.
Article
CAS
PubMed
Google Scholar
Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist. 2011;16:1–11.
Article
PubMed
Google Scholar
Venugopal R, Liu RH. Phytochemicals in diets for breast cancer prevention: the importance of resveratrol and ursolic acid. Food Science and Human Wellness. 2012;1:1–13.
Article
Google Scholar
Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis. 2012;33:483–91.
Article
CAS
PubMed
Google Scholar
Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin—dependent kinase 6, downregulates nuclear factor kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol. 2007;71:1703–14.
Article
CAS
PubMed
Google Scholar
Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci. 2003;4:207–16.
Article
CAS
PubMed
Google Scholar
Pardhasaradhi BV, Ali AM, Kumari AL, Reddanna P, Khar A. Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS. Mol Cancer Ther. 2003;2:1165–70.
CAS
PubMed
Google Scholar
Saini MK, Vaiphei K, Sanyal SN. Chemoprevention of DMH-induced rat colon carcinoma initiation by combination administration of piroxicam and c-phycocyanin. Mol Cell Biochem. 2012;361:217–28.
Article
CAS
PubMed
Google Scholar
Basha OM, Hafez RA, El-Ayouty YM, Mahrous KF, Bareedy MH, Salama AM. C-phycocyanin inhibits cell proliferation and may induce apoptosis in human HepG2 cells. Egypt J Immunol. 2008;15:161–7.
PubMed
Google Scholar
Li B, Gao MH, Zhang XC, Chu XM. Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem. 2006;43:155–64.
Article
CAS
PubMed
Google Scholar
Subhashini J, Mahipal SV, Reddy MC, Mallikarjuna Reddy M, Rachamallu A, Reddanna P. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol. 2004;68:453–62.
Article
CAS
PubMed
Google Scholar
Sylvester WP. Targeting met mediated epithelial-mesenchymal transition in the treatment of breast cancer. Clin Transl Med. 2014;3:30.
Article
PubMed
PubMed Central
Google Scholar
Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC. Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res. 2002;8:1747–53.
CAS
PubMed
Google Scholar
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signaling pathways in cancer. Oncogene. 2007;26:3279–90.
Article
CAS
PubMed
Google Scholar
Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49.
Article
CAS
PubMed
Google Scholar
Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3:1125–31.
Article
CAS
PubMed
Google Scholar
David D, Jagadeeshan S, Hariharan R, Nair AS, Pillai RM. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner. Cell Div. 2014;9:2.
Article
PubMed
PubMed Central
Google Scholar
Pandey VD, Pandey A, Sharma V. Biotechnological applications of cyanobacterial phycobiliproteins. Int J Curr Microbiol App Sci. 2013;2:89–97.
Google Scholar
Ossovskaya V, Wang Y, Budoff A, Xu Q, Lituev A, Potapova O, et al. Exploring molecular pathways of triple-negative breast cancer. Genes Cancer. 2011;2:870–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, et al. Cylooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res. 2005;66:7059–66.
Article
Google Scholar
Basu GD, Liang WS, Stephan DA, Wegener LT, Conley CR, Pockaj BA, et al. A novel role for Cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells. Breast Cancer Res. 2006;8:R69.
Article
PubMed
PubMed Central
Google Scholar
Ferraro DA, Gaborit N, Maron R, Cohen-Dvashi H, Porat Z, Pareia F, et al. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci U S A. 2013;110:1815–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32:35–48.
Article
PubMed
PubMed Central
Google Scholar
Manna A, Saha P, Sarkar A, Mukhopadhyay D, Bauri AK, Kumar D, et al. Malabaricone- A induces a redox imbalance that mediates apoptosis in U937 cell line. PLoS One. 2012;7.
Jung IL. Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS One. 2014;9:e95492.
Article
PubMed
PubMed Central
Google Scholar
Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al. Induction of apoptosis through oxidative stress-related pathways in MCF-7, human breast cancer cells, by ethyl acetate extract of Dillenia suffruticosa. BMC Complement Altern Med. 2014;14:55.
Article
PubMed
PubMed Central
Google Scholar
Bechelli J, Coppage M, Rosell K, Liesveld J. Cytotoxicity of algae extracts on normal and malignant cells. Leuk Res Treatment. 2011;2011:373519.
PubMed
PubMed Central
Google Scholar
Liu Y, Cao W, Zhang B, Liu YQ, Wang ZY, Wu YP, et al. The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci Rep. 2013;3:3098.
PubMed
PubMed Central
Google Scholar
Peyressatre M, Prevel C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel). 2015;7:179–237.
Article
Google Scholar
Schmitt E, Paquet C, Beauchemin M, Bertrand R. DNA-damge response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B. 2007;8:377–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berrada N, Delaloge S, Andre F. Treatment of triple –negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann Oncol. 2010;21:30–5.
Article
Google Scholar
Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16:475.
Article
PubMed
PubMed Central
Google Scholar
Santarpia L, Iwamoto T, Di Leo A, Hayashi N, Bottai G, Stampfer M, et al. DNA repair gene patterns as prognostic and predictive factors in molecular breast cancer subtypes. Oncologist. 2013;18:1063–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al Dhaheri Y, Eid A, AbuQamar S, Attoub S, Khasawneh M, Aiche G, et al. Mitotic arrest and apoptosis in breast cancer cells induced by Origanum majorana extract: upregulation of TNF-α and downregulation of surviving and mutant p53. PLoS One. 2013;8:e56649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berthelet J, Dubrez L. Regulation of apoptosis by Inhibitors of Apoptosis (IAPs). Cells. 2013;2:163–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kayaselcuk F, Nursal TZ, Polat A, Noyan T, Yildirim S, Tarim A, et al. Expression of survivin, bcl-2, P53 and Bax in breast carcinoma and ductal intraepithelial neoplasia (DIN 1a). J Exp Clin Cancer Res. 2004;23:105–12.
CAS
PubMed
Google Scholar
Ryan BM, Konecny GE, Kahlert S, Wang HJ, Untch M, Meng G, et al. Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol. 2006;17:597–604.
Article
CAS
PubMed
Google Scholar
Yamanaka K, Nakata M, Kaneko N, Fushiki H, Kita A, Nakahara T, et al. YM155, a selective survivin suppressant, inhibits tumor spread and prolongs survival in a spontaneous metastatic model of human triple negative breast cancer. Int J Oncol. 2011;39:569–75.
CAS
PubMed
Google Scholar
Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64:7183–90.
Article
CAS
PubMed
Google Scholar
Reddy MC, Subhashini J, Mahipal SV, Bhat VB, Srinivas Reddy P, Kiranmai G, et al. C-phycocyanin, a selective COX-2 inhibitor, induces apoptosis in lipopolysaccaride-stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun. 2003;304:385–92.
Article
CAS
PubMed
Google Scholar
Jang JH, Woo SM, Um HJ, Park EJ, Min KJ, Lee TJ, et al. RU, a glucocorticoid receptor antagonist, induces apoptosis in U937 human lymphoma cells through reduction in mitochondrial membrane potential and activation of p38 MAPK. Oncol Rep. 2013;30:506–12.
CAS
PubMed
Google Scholar
Telliez A, Furman C, Pommery N, Henichart JP. Mechanisms leading to COX-2 induced tumorigenesis: topical therapeutic strategies targeting COX-2 expression and activity. Ant cancer Agents Med Chem. 2006;6:187–208.
Article
CAS
Google Scholar
Davies G, Martin LA, Sacks N, Dowsett M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann Oncol. 2002;13:669–78.
Article
CAS
PubMed
Google Scholar
Brandao RD, Veeck J, Van de Vijver KK, Lindsey P, de Vries B, van Elssen CH, et al. A randomised controlled phase II trial of preoperative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer. Breast Cancer Res. 2013;15:R29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, et al. Cyclooxygenase-2 Inhibition Induces Apoptosis Signaling via Death Receptors and Mitochondria in Hepatocellular Carcinoma. Cancer Res. 2006;66:7059–66.
Article
CAS
PubMed
Google Scholar
von Rahden BH, Stein HJ, Puhringer F, Koch I, Langer R, Piontek G, et al. Coexpression of cyclooxygenases (COX-1, COX-2) and vascular endothelial growth factors (VEGF-A, VEGF-C) in esophageal adenocarcinoma. Cancer Res. 2005;65:5038–44.
Article
Google Scholar