Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am. 2008;55(1):97–120.
Article
PubMed
Google Scholar
Mueller S, Matthay KK. Neuroblastoma: biology and staging. Curr Oncol Rep. 2009;11(6):431–8.
Article
PubMed
Google Scholar
Howman-Giles R, Shaw PJ, Uren RF, Chung DK. Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2007;37(4):286–302.
Article
PubMed
Google Scholar
DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21(3):181–9.
Article
CAS
PubMed
Google Scholar
Haupt R, Garaventa A, Gambini C, Parodi S, Cangemi G, Casale F, et al. Improved survival of children with neuroblastoma between 1979 and 2005: a report of the Italian Neuroblastoma Registry. J Clin Oncol. 2010;28(14):2331–8.
Article
PubMed
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
Article
CAS
PubMed
Google Scholar
Konerding M, Fait E, Gaumann A. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer. 2001;84(10):1354.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor microenvironment. Cancer Res. 1996;56(24):5754–7.
CAS
PubMed
Google Scholar
Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–47.
Article
CAS
PubMed
Google Scholar
Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441–54. doi:10.1093/jnci/djm135.
Article
CAS
PubMed
Google Scholar
Hussein D, Estlin EJ, Dive C, Makin GW. Chronic hypoxia promotes hypoxia-inducible factor-1α–dependent resistance to etoposide and vincristine in neuroblastoma cells. Mol Cancer Ther. 2006;5(9):2241–50.
Article
CAS
PubMed
Google Scholar
Sullivan R, Paré GC, Frederiksen LJ, Semenza GL, Graham CH. Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther. 2008;7(7):1961–73.
Article
CAS
PubMed
Google Scholar
Ginis I, Faller DV. Hypoxia affects tumor cell invasiveness in vitro: the role of hypoxia-activated ligand HAL1/13 (Ku86 autoantigen). Cancer Lett. 2000;154(2):163–74.
Article
CAS
PubMed
Google Scholar
Jögi A, Øra I, Nilsson H, Lindeheim Å, Makino Y, Poellinger L, et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci U S A. 2002;99(10):7021–6.
Article
PubMed Central
PubMed
Google Scholar
Axelson H, Fredlund E, Ovenberger M, Landberg G, Påhlman S. Hypoxia-induced dedifferentiation of tumor cells–a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol. 2005;16(4):554–63. doi:10.1016/j.semcdb.2005.03.007.
Article
CAS
PubMed
Google Scholar
Jögi A, Vallon-Christersson J, Holmquist L, Axelson H, Borg Å, Påhlman S. Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res. 2004;295(2):469–87.
Article
PubMed
Google Scholar
Poomthavorn P, Wong SH, Higgins S, Werther GA, Russo VC. Activation of a prometastatic gene expression program in hypoxic neuroblastoma cells. Endocr Relat Cancer. 2009;16(3):991–1004.
Article
CAS
PubMed
Google Scholar
Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22.
PubMed Central
PubMed
Google Scholar
Semenza G. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. doi:10.1016/j.cell.2012.01.021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Sci Signal. 2001;294(5545):1337–40.
CAS
Google Scholar
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Sci Signal. 2001;292(5516):464–8.
CAS
Google Scholar
Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.
Article
CAS
PubMed
Google Scholar
Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, et al. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell. 2006;10(5):413–23.
Article
CAS
PubMed
Google Scholar
Noguera R, Fredlund E, Piqueras M, Pietras A, Beckman S, Navarro S, et al. HIF-1α and HIF-2α are differentially regulated in vivo in neuroblastoma: high HIF-1α correlates negatively to advanced clinical stage and tumor vascularization. Clin Cancer Res. 2009;15(23):7130–6.
Article
CAS
PubMed
Google Scholar
Chen S, Zhang M, Xing L, Wang Y, Xiao Y, Wu Y. HIF-1α contributes to proliferation and invasiveness of neuroblastoma cells via SHH signaling. Plos One. 2015;10(3):e0121115.
Article
PubMed Central
PubMed
Google Scholar
Stevenson RP, Veltman D, Machesky LM. Actin-bundling proteins in cancer progression at a glance. J Cell Sci. 2012;125(5):1073–9.
Article
CAS
PubMed
Google Scholar
Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta. 2007;1773(5):642–52. doi:10.1016/j.bbamcr.2006.07.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Böhmer R, Scharf E, Assoian RK. Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1. Mol Biol Cell. 1996;7(1):101–11.
Article
PubMed Central
PubMed
Google Scholar
Desouza M, Gunning PW, Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture. 2012;2(3):75–87.
Article
PubMed Central
PubMed
Google Scholar
Gourlay CW, Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol. 2005;6(7):583–9.
Article
CAS
PubMed
Google Scholar
Ingber DE, Prusty D, Sun Z, Betensky H, Wang N. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech. 1995;28(12):1471–84.
Article
CAS
PubMed
Google Scholar
Vogler M, Vogel S, Krull S, Farhat K, Leisering P, Lutz S, et al. Hypoxia modulates fibroblastic architecture, adhesion and migration: a role for HIF-1α in cofilin regulation and cytoplasmic actin distribution. PLoS One. 2013;8(7):1. doi:10.1371/journal.pone.0069128.
Article
Google Scholar
Gunning P, O’Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev. 2008;88(1):1–35.
Article
CAS
PubMed
Google Scholar
Greenfield NJ, Huang YJ, Swapna G, Bhattacharya A, Rapp B, Singh A, et al. Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. J Mol Biol. 2006;364(1):80–96.
Article
CAS
PubMed
Google Scholar
Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol. 2005;15(6):333–41.
Article
CAS
PubMed
Google Scholar
Helfman DM, Flynn P, Khan P, Saeed A. Tropomyosin as a regulator of cancer cell transformation. Tropomyosin. 2008;644:124–31.
Article
CAS
Google Scholar
Stehn JR, Haass NK, Bonello T, Desouza M, Kottyan G, Treutlein H, et al. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res. 2013;73(16):5169–82.
Article
CAS
PubMed
Google Scholar
Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973;33(11):2643–52.
CAS
PubMed
Google Scholar
Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978;38(11 Part 1):3751–7.
CAS
PubMed
Google Scholar
Robiolio M, Rumsey WL, Wilson DF. Oxygen diffusion and mitochondrial respiration in neuroblastoma cells. Am J Physiol Cell Physiol. 1989;256(6):C1207–C13.
CAS
Google Scholar
Vindin H, Bischof L, Gunning P, Stehn J. Validation of an algorithm to quantify changes in actin cytoskeletal organization. J Biomol Screen. 2014;19(3):354–68.
Article
CAS
PubMed
Google Scholar
Golji J, Collins R, Mofrad MR. Molecular mechanics of the α-actinin rod domain: bending, torsional, and extensional behavior. PLoS Comput Biol. 2009;5(5), e1000389.
Article
PubMed Central
PubMed
Google Scholar
Koizumi T, Nakatsuji H, Fukawa T, Avirmed S, Fukumori T, Takahashi M, et al. The role of Actinin-4 in bladder cancer invasion. Urology. 2010;75(2):357–64. doi:10.1016/j.urology.2009.09.037.
Article
PubMed
Google Scholar
Fukushima S, Yoshida A, Honda K, Maeshima A, Narita Y, Yamada T, et al. Immunohistochemical actinin-4 expression in infiltrating gliomas: association with WHO grade and differentiation. Brain Tumor Pathol. 2014;31(1):11–6. doi:10.1007/s10014-013-0139-z.
Article
CAS
PubMed
Google Scholar
Yamamoto S, Tsuda H, Honda K, Takano M, Tamai S, Imoto I, et al. ACTN4 gene amplification and actinin‐4 protein overexpression drive tumour development and histological progression in a high‐grade subset of ovarian clear‐cell adenocarcinomas. Histopathology. 2012;60(7):1073–83.
Article
PubMed
Google Scholar
Rössler J, Schwab M, Havers W, Schweigerer L. Hypoxia promotes apoptosis of human neuroblastoma cell lines with enhanced N-myc expression. Biochem Biophys Res Commun. 2001;281(2):272–6. doi:10.1006/bbrc.2001.4342.
Article
PubMed
Google Scholar
Gordan JD, Bertovrt JA, Hu C-J, Diehl JA, Simon MC. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11(4):335–47.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pelengaris S, Khan M, Evan G. c-MYC: more than just a matter of life and death. Nat Rev Cancer. 2002;2(10):764–76.
Article
CAS
PubMed
Google Scholar
Cannito S, Novo E, Compagnone A, di Bonzo LV, Busletta C, Zamara E, et al. Redox mechanisms switch on hypoxia-dependent epithelial–mesenchymal transition in cancer cells. Carcinogenesis. 2008;29(12):2267–78.
Article
CAS
PubMed
Google Scholar
Park S, Kim J, Kim Y. Mulberry leaf extract inhibits cancer cell stemness in neuroblastoma. Nutr Cancer. 2012;64(6):889–98.
Article
PubMed
Google Scholar
Sadee W, Yu V, Richards M, Preis P, Schwab M, Brodsky F, et al. Expression of neurotransmitter receptors and myc protooncogenes in subclones of a human neuroblastoma cell line. Cancer Res. 1987;47(19):5207–12.
CAS
PubMed
Google Scholar
Rao U, Denslow ND, Block ER. Hypoxia induces the synthesis of tropomyosin in cultured porcine pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 1994;267(3):L271–L81.
CAS
Google Scholar
Zimmerman LH, Levine RA, Farber HW. Hypoxia induces a specific set of stress proteins in cultured endothelial cells. J Clin Invest. 1991;87(3):908–14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Graven KK, Zimmerman LH, Dickson EW, Weinhouse GL, Farber HW. Endothelial cell hypoxia associated proteins are cell and stress specific. J Cell Physiol. 1993;157(3):544–54.
Article
CAS
PubMed
Google Scholar
Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006;21(4):521–31. doi:10.1016/j.molcel.2006.01.010.
Article
PubMed Central
PubMed
Google Scholar
Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. 2003;278(32):29655–60.
Article
CAS
PubMed
Google Scholar
Åkerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11(8):545–55.
Article
PubMed Central
PubMed
Google Scholar
Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P, Martin C, et al. A molecular pathway for myosin II recruitment to stress fibers. Curr Biol. 2011;21(7):539–50.
Article
CAS
PubMed
Google Scholar
Ishikawa R, Yamashiro S, Matsumura F. Annealing of gelsolin-severed actin fragments by tropomyosin in the presence of Ca2+. Potentiation of the annealing process by caldesmon. J Biol Chem. 1989;264(28):16764–70.
CAS
PubMed
Google Scholar
Ishikawa R, Yamashiro S, Matsumura F. Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J Biol Chem. 1989;264(13):7490–7.
CAS
PubMed
Google Scholar
Boyd J, Risinger JI, Wiseman RW, Merrick BA, Selkirk JK, Barrett JC. Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proc Natl Acad Sci U S A. 1995;92(25):11534–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Prasad G, Fuldner RA, Cooper HL. Expression of transduced tropomyosin 1 cDNA suppresses neoplastic growth of cells transformed by the ras oncogene. Proc Natl Acad Sci U S A. 1993;90(15):7039–43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T, et al. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene. 2003;22(40):6194–203.
Article
CAS
PubMed
Google Scholar
Prasad G, Masuelli L, Raj M, Harindranath N. Suppression of src-induced transformed phenotype by expression of tropomyosin-1. Oncogene. 1999;18(11):2027–31.
Article
CAS
PubMed
Google Scholar
Janssen R, Mier JW. Tropomyosin-2 cDNA lacking the 3'untranslated region riboregulator induces growth inhibition of v-Ki-ras-transformed fibroblasts. Mol Biol Cell. 1997;8(5):897–908.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gimona M, Kazzaz JA, Helfman DM. Forced expression of tropomyosin 2 or 3 in v-Ki-ras-transformed fibroblasts results in distinct phenotypic effects. Proc Natl Acad Sci U S A. 1996;93(18):9618–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R. The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med. 2001;31(12):1624–32. doi:10.1016/S0891-5849(01)00749-3.
Article
CAS
PubMed
Google Scholar
Moldovan L, Moldovan NI, Sohn RH, Parikh SA, Goldschmidt-Clermont PJ. Redox changes of cultured endothelial cells and actin dynamics. Circ Res. 2000;86(5):549–57.
Article
CAS
PubMed
Google Scholar
Lassing I, Schmitzberger F, Björnstedt M, Holmgren A, Nordlund P, Schutt CE, et al. Molecular and structural basis for redox regulation of β-actin. J Mol Biol. 2007;370(2):331–48.
Article
CAS
PubMed
Google Scholar
Liu L, Wise DR, Diehl JA, Simon MC. Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem. 2008;283(45):31153–62.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab. 2005;1(6):393–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC. Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-κB via c-SRC–and oxidant-dependent cell death. Cancer Res. 2007;67(15):7368–77.
Article
CAS
PubMed
Google Scholar
Houle F, Rousseau S, Morrice N, Luc M, Mongrain S, Turner CE, et al. Extracellular signal-regulated kinase mediates phosphorylation of tropomyosin-1 to promote cytoskeleton remodeling in response to oxidative stress: impact on membrane blebbing. Mol Biol Cell. 2003;14(4):1418–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Varga AE, Stourman NV, Zheng Q, Safina AF, Quan L, Li X, et al. Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-β. Oncogene. 2005;24(32):5043–52.
Article
CAS
PubMed
Google Scholar
Bharadwaj S, Prasad G. Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Lett. 2002;183(2):205–13.
Article
CAS
PubMed
Google Scholar
Shields JM, Mehta H, Pruitt K, Der CJ. Opposing roles of the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades in Ras-mediated downregulation of tropomyosin. Mol Cell Biol. 2002;22(7):2304–17.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shahrzad S, Bertrand K, Minhas K, Coomber B. Induction of DNA hypomethylation by tumor hypoxia. Epigenetics. 2007;2(2):119–25.
Article
PubMed
Google Scholar
Schevzov G, Whittaker SP, Fath T, Lin J, Gunning PW. Tropomyosin isoforms and reagents. Bioarchitecture. 2011;1(4):135–64.
Article
PubMed Central
PubMed
Google Scholar
Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O'Neill GM, et al. Tissue-specific tropomyosin isoform composition. J Histochem Cytochem. 2005;53(5):557–70.
Article
CAS
PubMed
Google Scholar
Nicholson-Flynn K, Hitchcock-DeGregori SE, Levitt P. Restricted expression of the actin-regulatory protein, tropomyosin, defines distinct boundaries, evaginating neuroepithelium, and choroid plexus forerunners during early CNS development. J Neurosci. 1996;16(21):6853–63.
CAS
PubMed
Google Scholar
Lynch J, Somerville T, Spencer GJ, Huang X, Somervaille TC. TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells. Cell Death Dis. 2013;4(4):e573. doi:10.1038/cddis.2013.107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shao H, Wang JH-C, Pollak MR, Wells A. α-actinin-4 is essential for maintaining the spreading, motility and contractility of fibroblasts. PLoS One. 2010;5(11), e13921.
Article
PubMed Central
PubMed
Google Scholar
Wong CC-L, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A. 2011;108(39):16369–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arzenani MK, Zade AE, Ming Y, Vijverberg SJ, Zhang Z, Khan Z, et al. Genomic DNA hypomethylation by histone deacetylase inhibition implicates DNMT1 nuclear dynamics. Mol Cell Biol. 2011;31(19):4119–28.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gottipati P, Vischioni B, Schultz N, Solomons J, Bryant HE, Djureinovic T, et al. Poly (ADP-Ribose) polymerase is hyperactivated in homologous recombination–defective cells. Cancer Res. 2010;70(13):5389–98.
Article
CAS
PubMed
Google Scholar