Smith RA, Cokkinides V, Brooks D, Saslow D, Brawley OW: Cancer screening in the United States, 2010 A Review of Current American Cancer Society Guidelines and Issues in Cancer Screening. CA Cancer J Clin. 2010, 60 (2): 99-119. 10.3322/caac.20063.
Article
PubMed
Google Scholar
Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 2013, 63 (1): 11-30. 10.3322/caac.21166.
Article
PubMed
Google Scholar
Feinberg AP, Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 2004, 4 (2): 143-153. 10.1038/nrc1279.
Article
CAS
PubMed
Google Scholar
Kim MY, Hur J, Jeong S: Emerging roles of RNA and RNA-binding protein network in cancer cells. BMB Rep. 2009, 42 (3): 125-130. 10.5483/BMBRep.2009.42.3.125.
Article
CAS
PubMed
Google Scholar
Krecic AM, Swanson MS: hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999, 11 (3): 363-371. 10.1016/S0955-0674(99)80051-9.
Article
CAS
PubMed
Google Scholar
Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG: hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993, 62: 289-321. 10.1146/annurev.bi.62.070193.001445.
Article
CAS
PubMed
Google Scholar
Audic Y, Hartley RS: Post-transcriptional regulation in cancer. Biol Cell. 2004, 96 (7): 479-498. 10.1016/j.biolcel.2004.05.002.
Article
CAS
PubMed
Google Scholar
Yisraeli JK: VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol Cell. 2005, 97 (1): 87-96. 10.1042/BC20040151.
Article
CAS
PubMed
Google Scholar
Li HJ, Watford W, Li CL, Parmelee A, Bryant MA, Deng CX, O'Shea J, Lee SB: Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J Clin Invest. 2007, 117 (5): 1314-1323. 10.1172/JCI31222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonenberg N, Hinnebusch AG: New modes of translational control in development, behavior, and disease. Mol Cell. 2007, 28 (5): 721-729. 10.1016/j.molcel.2007.11.018.
Article
CAS
PubMed
Google Scholar
Shu L, Yan W, Chen X: RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev. 2006, 20 (21): 2961-2972. 10.1101/gad.1463306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan W, Zhang J, Zhang Y, Jung YS, Chen X: p73 expression is regulated by RNPC1, a target of the p53 family, via mRNA stability. Mol Cell Biol. 2012, 32 (13): 2336-2348. 10.1128/MCB.00215-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho SJ, Zhang J, Chen X: RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability. Nucleic Acids Res. 2010, 38 (7): 2256-2267. 10.1093/nar/gkp1229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin T, Cho SJ, Chen X: RNPC1, an RNA-binding protein and a p53 target, regulates macrophage inhibitory cytokine-1 (MIC-1) expression through mRNA stability. J Biol Chem. 2013, 288 (33): 23680-23686. 10.1074/jbc.M113.480186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Jun Cho S, Chen X: RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proc Natl Acad Sci U S A. 2010, 107 (21): 9614-9619. 10.1073/pnas.0912594107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu E, Zhang J, Chen X: MDM2 expression is repressed by the RNA-binding protein RNPC1 via mRNA stability. Oncogene. 2013, 32 (17): 2169-2178. 10.1038/onc.2012.238.
Article
CAS
PubMed
Google Scholar
Zhang J, Cho SJ, Shu L, Yan W, Guerrero T, Kent M, Skorupski K, Chen H, Chen X: Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev. 2011, 25 (14): 1528-1543. 10.1101/gad.2069311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyamoto S, Hidaka K, Jin D, Morisaki T: RNA-binding proteins Rbm38 and Rbm24 regulate myogenic differentiation via p21-dependent and -independent regulatory pathways. Genes Cells. 2009, 14 (11): 1241-1252. 10.1111/j.1365-2443.2009.01347.x.
Article
CAS
PubMed
Google Scholar
Zheng SL, Xu JF, Isaacs SD, Wiley K, Chang BL, Bleecker ER, Walsh PC, Trent JM, Meyers DA, Isaacs WB: Evidence for a prostate cancer linkage to chromosome 20 in 159 hereditary prostate cancer families. Hum Genet. 2001, 108 (5): 430-435. 10.1007/s004390100513.
Article
CAS
PubMed
Google Scholar
Bar-Shira A, Pinthus JH, Rozovsky U, Goldstein M, Sellers WR, Yaron Y, Eshhar Z, Orr-Urtreger A: Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res. 2002, 62 (23): 6803-6807.
CAS
PubMed
Google Scholar
Tanner MM, Grenman S, Koul A, Johannsson O, Meltzer P, Pejovic T, Borg A, Isola JJ: Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Genes Cells. 2000, 6 (5): 1833-1839.
CAS
Google Scholar
Korn WM, Yasutake T, Kuo WL, Warren RS, Collins C, Tomita M, Gray J, Waldman FM: Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosomes Cancer. 1999, 25 (2): 82-90. 10.1002/(SICI)1098-2264(199906)25:2<82::AID-GCC2>3.0.CO;2-6.
Article
CAS
PubMed
Google Scholar
Knosel T, Schluns K, Stein U, Schwabe H, Schlag PM, Dietel M, Petersen I: Genetic imbalances with impact on survival in colorectal cancer patients. Histopathology. 2003, 43 (4): 323-331. 10.1046/j.1365-2559.2003.01720.x.
Article
CAS
PubMed
Google Scholar
Krackhardt AM, Witzens M, Harig S, Hodi FS, Zauls AJ, Chessia M, Barrett P, Gribben JG: Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood. 2002, 100 (6): 2123-2131. 10.1182/blood-2002-02-0513.
Article
CAS
PubMed
Google Scholar
Carvalho B, Postma C, Mongera S, Hopmans E, Diskin S, van de Wiel MA, van Criekinge W, Thas O, Matthaei A, Cuesta MA, Droste JST, Craanen M, Schroeck E, Ylstra B, Meijer GA: Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut. 2009, 58 (1): 79-89. 10.1136/gut.2007.143065.
Article
CAS
PubMed
Google Scholar
Hotte GJ, Linam-Lennon N, Reynolds JV, Maher SG: Radiation sensitivity of esophageal adenocarcinoma: the contribution of the RNA-binding protein RNPC1 and p21-mediated cell cycle arrest to radioresistance. Radiat Res. 2012, 177 (3): 272-279. 10.1667/RR2776.1.
Article
CAS
PubMed
Google Scholar
Ginestier C, Cervera N, Finetti P, Esteyries S, Esterni B, Adelaide J, Xerri L, Viens P, Jacquemier J, Charafe-Jauffret E, Chaffanet M, Birnbaum D, Bertucci F: Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res. 2006, 12 (15): 4533-4544. 10.1158/1078-0432.CCR-05-2339.
Article
CAS
PubMed
Google Scholar
Letessier A, Sircoulomb F, Ginestier C, Cervera N, Monville F, Gelsi-Boyer V, Esterni B, Geneix J, Finetti P, Zemmour C, Viens P, Charafe-Jauffret E, Jacquemier J, Birnbaum D, Chaffanet M: Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer. 2006, 6 (1): 245-10.1186/1471-2407-6-245.
Article
PubMed
PubMed Central
Google Scholar
Feldstein O, Ben-Hamo R, Bashari D, Efroni S, Ginsberg D: RBM38 is a direct transcriptional target of E2F1 that limits E2F1-induced proliferation. Mol Cancer Res. 2012, 10 (9): 1169-1177. 10.1158/1541-7786.MCR-12-0331.
Article
CAS
PubMed
Google Scholar
Leveille N, Elkon R, Davalos V, Manoharan V, Hollingworth D, Oude Vrielink J, le Sage C, Melo CA, Horlings HM, Wesseling J, Ule J, Esteller M, Ramos A, Agami R: Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nat Commun. 2011, 2: 513-
Article
PubMed
PubMed Central
Google Scholar
Zheng MJ, Wang J, Chen YW, Xu L, Xue DD, Fu W, Zhang YF, Du Q, Zhao Y, Ling LJ, Ding Q, Liu XA, Zha XM, Zheng W, Xia TS, Wang S: A novel mouse model of gastric cancer with human gastric microenvironment. Cancer Lett. 2012, 325 (1): 108-115. 10.1016/j.canlet.2012.06.011.
Article
CAS
PubMed
Google Scholar
Pan H, Zhou W, He W, Liu X, Ding Q, Ling L, Zha X, Wang S: Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-kappaB activity via the Notch-1 pathway. Int J Mol Med. 2012, 30 (2): 337-343.
CAS
PubMed
Google Scholar
Colburn NH, Bruegge WF, Bates JR, Gray RH, Rossen JD, Kelsey WH, Shimada T: Correlation of anchorage-independent growth with tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res. 1978, 38 (3): 624-634.
CAS
PubMed
Google Scholar
Evan GI, Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature. 2001, 411 (6835): 342-348. 10.1038/35077213.
Article
CAS
PubMed
Google Scholar
Cho SJ, Jung YS, Zhang J, Chen X: The RNA-binding protein RNPC1 stabilizes the mRNA encoding the RNA-binding protein HuR and cooperates with HuR to suppress cell proliferation. J Biol Chem. 2012, 287 (18): 14535-14544. 10.1074/jbc.M111.326827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stetler-Stevenson WG, Aznavoorian S, Liotta LA: Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993, 9: 541-573. 10.1146/annurev.cb.09.110193.002545.
Article
CAS
PubMed
Google Scholar
Thiery JP, Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006, 7 (2): 131-142. 10.1038/nrm1835.
Article
CAS
PubMed
Google Scholar
Kang Y, Massague J: Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004, 118 (3): 277-279. 10.1016/j.cell.2004.07.011.
Article
CAS
PubMed
Google Scholar
Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ: The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001, 128 (16): 3117-3131.
CAS
PubMed
PubMed Central
Google Scholar
Wiseman BS, Werb Z: Stromal effects on mammary gland development and breast cancer. Science. 2002, 296 (5570): 1046-1049. 10.1126/science.1067431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brosh R, Rotter V: When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009, 9 (10): 701-713.
CAS
PubMed
Google Scholar
Bartek J, Iggo R, Gannon J, Lane DP: Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene. 1990, 5 (6): 893-899.
CAS
PubMed
Google Scholar
Maslon MM, Hupp TR: Drug discovery and mutant p53. Trends Cell Biol. 2010, 20 (9): 542-555. 10.1016/j.tcb.2010.06.005.
Article
CAS
PubMed
Google Scholar
Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC: p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol. 2009, 11 (6): 694-704. 10.1038/ncb1875.
Article
CAS
PubMed
Google Scholar
Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, Kamer I, Stambolsky P, Shelly A, Goldfinger N, Valsesia-Wittmann S, Puisieux A, Zundelevich A, Gal-Yam EN, Avivi C, Barshack I, Brait M, Sidransky D, Domany E, Rotter V: Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ. 2011, 18 (2): 271-281. 10.1038/cdd.2010.94.
Article
CAS
PubMed
Google Scholar