Although nephroureterectoumy is a curative therapy for the majority of patients who present with tumours limited to the ureteral muscularis, the rate of local-regional recurrence may be as high as 45% (57/126), as reported in a median 9-month follow-up study in patients with locally advanced disease [6]. In addition, persistent loco-regional disease may play an important role in the subsequent development of distant metastases. Therefore, it is important to address the role of adjuvant radiation therapy, in addition to surgery, for the local and regional control of the disease, as well as to improve the overall treatment outcome. TCC of the renal pelvis and ureter is an unusual disease with insufficient clinical data; therefore, the role of EBRT in treating this disease is unclear. Czito et al. [9] retrospectively reviewed the records of 31 patients with locally advanced TCC of the renal pelvis and ureter who underwent surgery followed by adjuvant EBRT with or without concurrent chemotherapy [methotrexate, cisplatin and vinblastine (MCV)]. The 5-year overall and disease-free survival rates were improved in patients with locally advanced upper tract urothelial malignancies who underwent resection surgery and adjuvant concurrent chemoradiotherapy. This regimen should be considered in patients with T3/4 and/or node positive upper tract TCC. Patients with advanced disease treated with surgery alone had a shorter disease-free survival (23.3 months) than those treated with combination chemoradiotherapy (45.2 months). In our study, we also found that radiotherapy significantly reduced the rate of tumour recurrence, irrespective of the pT stage or the presence of synchronous LN. However, EBRT seemed to confer an overall survival advantage only to patients with T3/T4 stage or synchronous LN.
In this study, univariate analysis indicated that an increased overall survival was significantly associated with age < 60 years, a T1 or T2 tumour stage, no synchronous LN metastases, nephroureterectomy, R0 resection and a lower histological grade. These prognostic factors are similar to those reported by Ozsahin et al. [6], Tan et al. [3], and Raman et al. [12]. Recently, Raman et al. reported a retrospective review of data collected from 10 global institutions, which included 1,249 patients with TCC of the renal pelvis and ureter. This study determined that advanced T stage, higher histological grade, and lymph node metastases were associated with a poorer survival outcome [12].
Both our univariate and multivariate analyses suggested that radiation was an effective and tolerable treatment for patients with T3 or T4 pelvis or ureteral TCC. However, there are three fundamental questions that must be answered in order to develop a comprehensive plan for performing radiotherapy in these patients:
1) What is the appropriate volume of tissue that we must irradiate to achieve the desired curative or palliative goal? The volume of tissue exposed to radiation in order to encompass the gross nodal metastases and the residual tumour, and whether to include adjacent areas of potential microscopic disease, have been controversial issues. In this study, the clinical target volume included the renal fossa, the course of the ureter to the bladder, and the paracaval and para-aortic lymph nodes, which were at risk of harbouring metastatic disease. For T1 or T2-stage patients, radiotherapy did not improve overall survival, but did delay bladder tumour relapse.
Bladder tumour recurrence following nephroureterectomy for TCC of the upper urinary tract was observed in 30-40% of patients [2, 3]. Most bladder tumour recurrences develop within 2 years following surgical resection. Cozad et al. reported that radiotherapy could significantly reduce local recurrence. There was a borderline significant increase in the overall survival (p = 0.07) for 77 patients who all had T stage renal pelvis and ureteral cancer [13]. Multivariate analysis determined that the ureteric tumour location was an independent predictor (p = 0.02) for bladder tumour relapse, with rates of 20% (25/123) for patients with renal pelvis cancer and 40% (19/47) for patients with ureteral cancer. Our results showed that the bladder tumour relapse rates were 14.3% (6/42) for renal pelvis cancer and 35.2% (32/91) for ureteric cancer (chi-square test, p = 0.013). Based on these observations, we suggest that the clinical target volume should only include the bladder for elective radiotherapy in the case of T1 or T2 patients, especially in patients with ureteric cancer, as this regimen will effectively delay bladder tumour relapse.
2) What is the planned treatment dose? Selection of the radiation dose is a complex issue for abdominal cancer, because it requires the radiation oncologist to weigh the use of a sufficiently high radiation dose against an unacceptably high risk of side effects. Radiation complications consistently increase as the radiation dose increases. In general, the post-operation adjuvant radiation dose should be between 45 and 50 Gy, as this was established to be a safe dosage for the small bowel and colon. Usually, the length of the field from cephalic to caudal is >30 cm; however, no grade toxicity was observed in this study. Chauffert et al. reported no gastrointestinal bleeding in 119 patients with advanced pancreatic cancer who received 60 Gy radiation with conventional fractions [14]. Therefore, a radiation dose between 45 and 50 Gy was acceptable to use in this study.
3) What are the chemotherapeutic regimens? Adjuvant chemotherapy with paclitaxel and carboplatin [15] or M-VAC [16] is feasible, may reduce the risk of distant metastases, and may prevent the recurrence of bladder tumour in patients with high-risk upper urinary tract carcinoma. There are a few controlled clinical trials using adjuvant or radical radiotherapy with or without chemotherapy in patients with renal pelvic and ureteric cancer; therefore, whether radiotherapy improves the treatment outcome is inconclusive. A study by Czito et al. reported that cisplatin-based chemotherapy concurrently delivered with radiation significantly improved the treatment outcome. Chemotherapy may further improve the treatment outcome if it is concurrently delivered with high-dose radiation. Unfortunately, we did not adopt adjuvant chemotherapy in this study, partly due to the lack of evidence supporting adjuvant chemotherapy at the time of our protocol design. However, all patients in this study received postoperative instillation of MMC or epidorubicin as a regional chemotherapy, and this regimen successfully reduced the recurrence of bladder tumours after surgery for upper urinary tract tumours [17]. Currently, there is not enough evidence to support replacement of systemic chemotherapy with intravesical chemotherapy.
Limitations of our study included the non-randomised design and the use of several different radiation techniques, which may have been affected by selection bias, and the fact that no systemic chemotherapy regimens were included. Although our sample size was relatively large, these issues should be addressed, preferably in a prospective study using a randomised design. However, due to the rarity of this malignancy, development of the optimal treatment strategy for patients with TCC of the renal pelvis and ureter may be impossible without collaborative efforts among multiple cancer treatment institutions.