Thomas DA, Faderl S, O'Brien S, Bueso-Ramos C, Cortes J, Garcia-Manero G, Giles FJ, Verstovsek S, Wierda WG, Pierce SA, Shan J, Brandt M, Hagemeister FB, Keating MJ, Cabanillas F, Kantarjian H: Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer. 2006, 106: 1569-80. 10.1002/cncr.21776.
Article
CAS
PubMed
Google Scholar
Ottmann OG, Wassmann B, Pfeifer H, Giagounidis A, Stelljes M, Duhrsen U, Schmalzing M, Wunderle L, Binckebanck A, Hoelzer D: Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Cancer. 2007, 109: 2068-76. 10.1002/cncr.22631.
Article
CAS
PubMed
Google Scholar
Vignetti M, Fazi P, Cimino G, Martinelli G, Di Raimondo F, Ferrara F, Meloni G, Ambrosetti A, Quarta G, Pagano L, Rege-Cambrin G, Elia L, Bertieri R, Annino L, Foa R, Baccarani M, Mandelli F: Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell'Ad. Blood. 2007, 109: 3676-8. 10.1182/blood-2006-10-052746.
Article
CAS
PubMed
Google Scholar
Wilhelm S, Chien D: BAY 43-9006: preclinical data. Curr Pharm Des. 2002, 8: 2255-7. 10.2174/1381612023393026.
Article
CAS
PubMed
Google Scholar
Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S: Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006, 5: 835-44. 10.1038/nrd2130.
Article
CAS
PubMed
Google Scholar
Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH, Adjei AA: The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene. 2005, 24: 6861-9. 10.1038/sj.onc.1208841.
Article
CAS
PubMed
Google Scholar
Auclair D, Miller D, Yatsula V, Pickett W, Carter C, Chang Y, Zhang X, Wilkie D, Burd A, Shi H, Rocks S, Gedrich R, Abriola L, Vasavada H, Lynch M, Dumas J, Trail PA, Wilhelm SM: Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia. 2007, 21: 439-45. 10.1038/sj.leu.2404508.
Article
CAS
PubMed
Google Scholar
Zhang W, Konopleva M, Shi Y, McQueen T, Harris D, Ling X, Estrov Z, Quintas-Cardama A, Small D, Cortes J, Andreeff M: Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008, 100: 184-98. 10.1093/jnci/djm328.
Article
CAS
PubMed
Google Scholar
Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64: 7099-109. 10.1158/0008-5472.CAN-04-1443.
Article
CAS
PubMed
Google Scholar
Strumberg D: Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc). 2005, 41: 773-84. 10.1358/dot.2005.41.12.937959.
Article
CAS
Google Scholar
Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A, Eilers M, Enghofer E, Neubauer A, Burchert A: Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood. 2009, 113: 6567-71. 10.1182/blood-2009-03-208298.
Article
CAS
PubMed
Google Scholar
Bliss CI: The toxicity of poisons applied jointly. ANNALS OF APPLIED BIOLOGY. 1939, 26: 585-615. 10.1111/j.1744-7348.1939.tb06990.x.
Article
CAS
Google Scholar
Buck E, Eyzaguirre A, Brown E, Petti F, McCormack S, Haley JD, Iwata KK, Gibson NW, Griffin G: Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther. 2006, 5: 2676-84. 10.1158/1535-7163.MCT-06-0166.
Article
CAS
PubMed
Google Scholar
Grimme HL ARBTFMBWaSM: Combined Effects of Environmental Pollutants in Ecotoxicology: Biometrical Models as Concepts for Prediction and their Experimental Proof. UWSF - Z. Umweltchem. Ökotox. 12: 226-234. 10.1007/BF03038215.
Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG, McCubrey J, Cortes J, Andreeff M: Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008, 22: 808-18. 10.1038/sj.leu.2405098.
Article
CAS
PubMed
Google Scholar
Yang F, Brown C, Buettner R, Hedvat M, Starr R, Scuto A, Schroeder A, Jensen M, Jove R: Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3. Mol Cancer Ther. 2010, 9: 953-62. 10.1158/1535-7163.MCT-09-0947.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang S, Sinicrope FA: Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Mol Cancer Ther. 2010, 9: 742-50. 10.1158/1535-7163.MCT-09-1004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahmani M, Davis EM, Bauer C, Dent P, Grant S: Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005, 280: 35217-27. 10.1074/jbc.M506551200.
Article
CAS
PubMed
Google Scholar
Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006, 66: 11851-8. 10.1158/0008-5472.CAN-06-1377.
Article
CAS
PubMed
Google Scholar
Bonelli MA, Fumarola C, Alfieri RR, La Monica S, Cavazzoni A, Galetti M, Gatti R, Belletti S, Harris AL, Fox SB, Evans DB, Dowsett M, Martin LA, Bottini A, Generali D, Petronini PG: Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat. 2010, 124: 79-88. 10.1007/s10549-009-0714-5.
Article
CAS
PubMed
Google Scholar
Ulivi P, Arienti C, Amadori D, Fabbri F, Carloni S, Tesei A, Vannini I, Silvestrini R, Zoli W: Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol. 2009, 220: 214-21. 10.1002/jcp.21753.
Article
CAS
PubMed
Google Scholar
Chai H, Luo AZ, Weerasinghe P, Brown RE: Sorafenib downregulates ERK/Akt and STAT3 survival pathways and induces apoptosis in a human neuroblastoma cell line. Int J Clin Exp Pathol. 2010, 3: 408-15.
CAS
PubMed
PubMed Central
Google Scholar
Vogt PK, Jiang H, Aoki M: Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle. 2005, 4: 908-13.
Article
CAS
PubMed
Google Scholar
Van Der Heide LP, Hoekman MFM, Smidt MP: The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004, 380: 297-309. 10.1042/BJ20040167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serra V, Markman B, Scaltriti M, Eichhorn PJA, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, Maira M, Garcia-Echeverria C, Parra JL, Arribas J, Baselga J: NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008, 68: 8022-30. 10.1158/0008-5472.CAN-08-1385.
Article
CAS
PubMed
Google Scholar
Greer EL, Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005, 24: 7410-25. 10.1038/sj.onc.1209086.
Article
CAS
PubMed
Google Scholar
Fu Z, Tindall DJ: FOXOs, cancer and regulation of apoptosis. Oncogene. 2008, 27: 2312-9. 10.1038/onc.2008.24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L: VEGF-receptor signal transduction. Trends Biochem Sci. 2003, 28: 488-94. 10.1016/S0968-0004(03)00193-2.
Article
CAS
PubMed
Google Scholar
Molhoek KR, Brautigan DL, Slingluff CLJ: Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med. 2005, 3: 39-10.1186/1479-5876-3-39.
Article
PubMed
PubMed Central
Google Scholar
Sengupta S, Schiff R, Katzenellenbogen BS: Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells. Breast Cancer Res Treat. 2009, 117: 243-51. 10.1007/s10549-008-0186-z.
Article
CAS
PubMed
Google Scholar
Stirewalt DL, Radich JP: The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003, 3: 650-65. 10.1038/nrc1169.
Article
CAS
PubMed
Google Scholar
Armstrong SA, Mabon ME, Silverman LB, Li A, Gribben JG, Fox EA, Sallan SE, Korsmeyer SJ: FLT3 mutations in childhood acute lymphoblastic leukemia. Blood. 2004, 103: 3544-6. 10.1182/blood-2003-07-2441.
Article
CAS
PubMed
Google Scholar
Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R, Tsuchida M, Sugita K, Ida K, Hayashi Y: FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004, 103: 1085-8. 10.1182/blood-2003-02-0418.
Article
CAS
PubMed
Google Scholar
Small D: FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program. 2006, 178-84.
Google Scholar
Takimoto CH, Awada A: Safety and anti-tumor activity of sorafenib (Nexavar) in combination with other anti-cancer agents: a review of clinical trials. Cancer Chemother Pharmacol. 2008, 61: 535-48. 10.1007/s00280-007-0639-9.
Article
CAS
PubMed
Google Scholar
Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, Savic R, Hoshida Y, Lim KH, Melgar-Lesmes P, Yea S, Peix J, Deniz K, Fiel MI, Thung S, Alsinet C, Tovar V, Mazzaferro V, Bruix J, Roayaie S, Schwartz M, Friedman SL, Llovet JM: Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol. 2009, 51: 725-33. 10.1016/j.jhep.2009.03.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richly H, Schultheis B, Adamietz IA, Kupsch P, Grubert M, Hilger RA, Ludwig M, Brendel E, Christensen O, Strumberg D: Combination of sorafenib and doxorubicin in patients with advanced hepatocellular carcinoma: results from a phase I extension trial. Eur J Cancer. 2009, 45: 579-87. 10.1016/j.ejca.2008.10.039.
Article
CAS
PubMed
Google Scholar
Levis M, Pham R, Smith BD, Small D: In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004, 104: 1145-50. 10.1182/blood-2004-01-0388.
Article
CAS
PubMed
Google Scholar
Wang Z, Zhou J, Fan J, Qiu S, Yu Y, Huang X, Tang Z: Effect of rapamycin alone and in combination with sorafenib in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res. 2008, 14: 5124-30. 10.1158/1078-0432.CCR-07-4774.
Article
CAS
PubMed
Google Scholar
Ikezoe T, Nishioka C, Bandobashi K, Yang Y, Kuwayama Y, Adachi Y, Takeuchi T, Koeffler HP, Taguchi H: Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk Res. 2007, 31: 673-82. 10.1016/j.leukres.2006.08.001.
Article
CAS
PubMed
Google Scholar
Haritunians T, Mori A, O'Kelly J, Luong QT, Giles FJ, Koeffler HP: Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia. 2007, 21: 333-9. 10.1038/sj.leu.2404471.
Article
CAS
PubMed
Google Scholar
Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L, Knight ZA, Shokat KM, Azar N, Viguie F, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D: PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia. 2008, 22: 1698-706. 10.1038/leu.2008.144.
Article
CAS
PubMed
Google Scholar
Hjelmeland AB, Lattimore KP, Fee BE, Shi Q, Wickman S, Keir ST, Hjelmeland MD, Batt D, Bigner DD, Friedman HS, Rich JN: The combination of novel low molecular weight inhibitors of RAF (LBT613) and target of rapamycin (RAD001) decreases glioma proliferation and invasion. Mol Cancer Ther. 2007, 6: 2449-57. 10.1158/1535-7163.MCT-07-0155.
Article
CAS
PubMed
Google Scholar
Ikezoe T, Nishioka C, Tasaka T, Yang Y, Komatsu N, Togitani K, Koeffler HP, Taguchi H: The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamycin signaling. Mol Cancer Ther. 2006, 5: 2522-30. 10.1158/1535-7163.MCT-06-0071.
Article
CAS
PubMed
Google Scholar
Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D: Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood. 2008, 111: 379-82. 10.1182/blood-2007-03-080796.
Article
CAS
PubMed
Google Scholar