Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J Clin. 2018;68(6):394–424 (PubMed PMID: 30207593).
Google Scholar
Pastor DM, Poritz LS, Olson TL, Kline CL, Harris LR, Koltun WA, et al. Primary cell lines: false representation or model system? a comparison of four human colorectal tumors and their coordinately established cell lines. Int J Clini Experiment Med. 2010;3(1):69–83 (PubMed PMID: 20369042. Pubmed Central PMCID: 2848308).
CAS
Google Scholar
Gottschling S, Jauch A, Kuner R, Herpel E, Mueller-Decker K, Schnabel PA, et al. Establishment and comparative characterization of novel squamous cell non-small cell lung cancer cell lines and their corresponding tumor tissue. Lung Cancer. 2012;75(1):45–57 (PubMed PMID: 21684623).
Article
Google Scholar
Chuang CK, Chuang KL, Hsieh CH, Shen YC, Liao SK. Epstein-Barr virus-infected cell line TCC36B derived from B lymphocytes infiltrating renal pelvis urothelial carcinoma. Anticancer Res. 2010;30(9):3473–8 (PubMed PMID: 20944125).
CAS
Google Scholar
Dieter SM, Giessler KM, Kriegsmann M, Dubash TD, Mohrmann L, Schulz ER, et al. Patient-derived xenografts of gastrointestinal cancers are susceptible to rapid and delayed B-lymphoproliferation. Int J Cancer. 2017;140(6):1356–63 (PubMed PMID: 27935045).
Article
CAS
Google Scholar
Oppel F, Shao S, Schurmann M, Goon P, Albers AE, Sudhoff H. An Effective Primary Head and Neck Squamous Cell Carcinoma In Vitro Model. Cells. 2019 Jun 7;8(6). PubMed PMID: 31181618. Pubmed Central PMCID: 6628367.
Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2006;24(14):2137–50 (PubMed PMID: 16682732).
Article
Google Scholar
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86 (PubMed PMID: 25220842).
Article
CAS
Google Scholar
Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82 (PubMed PMID: 29497144).
Article
CAS
Google Scholar
Galot R, Le Tourneau C, Guigay J, Licitra L, Tinhofer I, Kong A, et al. Personalized biomarker-based treatment strategy for patients with squamous cell carcinoma of the head and neck: EORTC position and approach. Anna Oncol : Official J European Soc Med Oncol. 2018;29(12):2313–27 (PubMed PMID: 30307465).
Article
CAS
Google Scholar
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46 (PubMed PMID: 35022204).
Article
CAS
Google Scholar
Worsham MJ, Wolman SR, Carey TE, Zarbo RJ, Benninger MS, Van Dyke DL. Chromosomal aberrations identified in culture of squamous carcinomas are confirmed by fluorescence in situ hybridisation. Mol Pathol : MP. 1999;52(1):42–6 (PubMed PMID: 10439839. Pubmed Central PMCID: 395670).
Article
CAS
Google Scholar
Ragin CC, Reshmi SC, Gollin SM. Mapping and analysis of HPV16 integration sites in a head and neck cancer cell line. Int J Cancer. 2004;110(5):701–9 (PubMed PMID: 15146560).
Article
CAS
Google Scholar
Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Can Res : an official journal of the American Association for Cancer Research. 2008;14(13):4085–95 (PubMed PMID: 18593985).
Article
CAS
Google Scholar
Kadletz L, Heiduschka G, Domayer J, Schmid R, Enzenhofer E, Thurnher D. Evaluation of spheroid head and neck squamous cell carcinoma cell models in comparison to monolayer cultures. Oncol Lett. 2015;10(3):1281–6 (PubMed PMID: 26622664. Pubmed Central PMCID: 4533713).
Article
CAS
Google Scholar
Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 2017;108(3):283–9 (PubMed PMID: 28064442. Pubmed Central PMCID: 5378268).
Article
CAS
Google Scholar
Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays. In: Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin CP, et al., editors. Assay Guidance Manual. Bethesda: 2004. (PubMed PMID: 23805433).
Ball CR, Oppel F, Ehrenberg KR, Dubash TD, Dieter SM, Hoffmann CM, Abel U, Herbst F, Koch M, Werner J, Bergmann F, Ishaque N, Schmidt M, von Kalle C, Scholl C, Fröhling S, Brors B, Weichert W, Weitz J, Glimm H. Succession of transiently active tumor-initiating cell clones in human pancreatic cancer xenografts. EMBO Mol Med. 2017;9(7):918-932. (PubMed PMID: 28526679. Pubmed Central PMCID: PMC5494525).
Oppel F, Tao T, Shi H, Ross KN, Zimmerman MW, He S, Tong G, Aster JC, Look AT. Loss of atrx cooperates with p53-deficiency to promote the development of sarcomas and other malignancies. PLoS Genet. 2019;15(4):e1008039. (PubMed PMID: 30970016. Pubmed Central PMCID: PMC6476535).
Shen YQ, Guerra-Librero A, Fernandez-Gil BI, Florido J, Garcia-Lopez S, Martinez-Ruiz L, et al. Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J Pineal Res. 2018;64(3). (PubMed PMID: 29247557).
Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–32 (PubMed PMID: 26783961. Pubmed Central PMCID: 4905455).
Article
Google Scholar
Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385(3):307–13 (PubMed PMID: 19450560).
Article
CAS
Google Scholar
Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & neck. 2010;32(9):1195–201 (PubMed PMID: 20073073. Pubmed Central PMCID: 2991066).
Article
Google Scholar
Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel). 2018;10(7):213. (PubMed PMID: 29932446. Pubmed Central PMCID: 6071257).
Zhang X, Zhang R, Ren C, Xu Y, Wu S, Meng C, et al. Epstein Barr virus-positive B-cell lymphoma is highly vulnerable to MDM2 inhibitors in vivo. Blood Adv. 2022;6(3):891-901. (PubMed PMID: 34861697).
Thérèse Stachyra-Valat, Frédéric Baysang, Anne-Cécile D’Alessandro, Erdmann Dirk, Pascal Furet, Vito Guagnano, Joerg Kallen, Lukas Leder, Robert Mah, Keiichi Masuya, Stefan Stutz, Andrea Vaupel, Francesco Hofmann, Patrick Chène, Sébastien Jeay, Philipp Holzer. NVP-HDM201: Biochemical and biophysical profile of a novel highly potent and selective PPI inhibitor of p53-Mdm2. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA, Philadelphia: AACR; Cancer Res. 2016;76(14 Suppl):Abstract nr 1239.
Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89 (PubMed PMID: 15879151).
Article
CAS
Google Scholar
Sjogren HO, Jonsson N. Cellular immunity to Rous sarcoma in tumor-bearing chickens. Can Res. 1970;30(9):2434–7 (PubMed PMID: 4319907).
CAS
Google Scholar
Wainberg MA, Markson Y, Weiss DW, Doljanski F. Cellular immunity against Rous sarcomas of chickens Preferential reactivity against autochthonous target cells as determined by lymphocyte adherence and cytotoxicity tests in vitro. Proc Natl Acad Sci U S A. 1974;71(9):3565–9 (PubMed PMID: 4139718. Pubmed Central PMCID: 433815).
Article
CAS
Google Scholar
Schneider K, Marbaix E, Bouzin C, Hamoir M, Mahy P, Bol V, et al. Immune cell infiltration in head and neck squamous cell carcinoma and patient outcome: a retrospective study. Acta Oncol. 2018;57(9):1165–72 (PubMed PMID: 29493423).
Article
Google Scholar
Marsigliante S, Biscozzo L, Marra A, Nicolardi G, Leo G, Lobreglio GB, et al. Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens. Cancer Lett. 1999;139(1):33–41 (PubMed PMID: 10408906).
Article
CAS
Google Scholar
Wolf GT, Hudson JL, Peterson KA, Miller HL, McClatchey KD. Lymphocyte subpopulations infiltrating squamous carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg : official J American Acad Otolaryngol-Head Neck Surg. 1986;95(2):142–52 (PubMed PMID: 2954014).
Article
CAS
Google Scholar
Taghavi N, Mohsenifar Z, Baghban AA, Arjomandkhah A. CD20+ Tumor Infiltrating B Lymphocyte in Oral Squamous Cell Carcinoma: Correlation with Clinicopathologic Characteristics and Heat Shock Protein 70 Expression. Patholog Res Int. 2018;2018:4810751 (PubMed PMID: 29850009. Pubmed Central PMCID: 5904773).
Google Scholar
Zhu N, Ding L, Fu Y, Yang Y, Chen S, Chen W, et al. Tumor-infiltrating lymphocyte-derived MLL2 independently predicts disease-free survival for patients with early-stage oral squamous cell carcinoma. J Oral Pathol Med. 2020;49(2):126–36. (PubMed PMID: 31660637).
Berghoff AS, Ricken G, Wilhelm D, Rajky O, Widhalm G, Dieckmann K, et al. Tumor infiltrating lymphocytes and PD-L1 expression in brain metastases of small cell lung cancer (SCLC). J Neurooncol. 2016;130(1):19–29 (PubMed PMID: 27436101).
Article
CAS
Google Scholar
Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Can Res. 2008;68(13):5405–13 (PubMed PMID: 18593943).
Article
CAS
Google Scholar
Liao Y, Ou J, Deng J, Geng P, Zeng R, Tian Y, et al. Clinical implications of the tumor-infiltrating lymphocyte subsets in colorectal cancer. Med Oncol. 2013;30(4):727 (PubMed PMID: 24026663).
Article
Google Scholar
Facompre ND, Sahu V, Montone KT, Harmeyer KM, Nakagawa H, Rustgi AK, et al. Barriers to generating PDX models of HPV-related head and neck cancer. The Laryngoscope. 2017;127(12):2777–83 (PubMed PMID: 28561270. Pubmed Central PMCID: 5687999).
Article
CAS
Google Scholar
Stevanovic S, Helman SR, Wunderlich JR, Langhan MM, Doran SL, Kwong MLM, et al. A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human Papillomavirus-associated Epithelial Cancers. Clin Can Res : an official J American Assoc Cancer Res. 2019;25(5):1486–93 (PubMed PMID: 30518633. Pubmed Central PMCID: 6397671).
Article
CAS
Google Scholar
Schoof DD, Jung SE, Eberlein TJ. Human tumor-infiltrating lymphocyte (TIL) cytotoxicity facilitated by anti-T-cell receptor antibody. Int J Cancer. 1989;44(2):219–24 (PubMed PMID: 2503456).
Article
CAS
Google Scholar
Zippel D, Friedman-Eldar O, Rayman S, Hazzan D, Nissan A, Schtrechman G, et al. Tissue Harvesting for Adoptive Tumor Infiltrating Lymphocyte Therapy in Metastatic Melanoma. Anticancer Res. 2019;39(9):4995–5001 (PubMed PMID: 31519606).
Article
CAS
Google Scholar
Topalian SL, Muul LM, Solomon D, Rosenberg SA. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods. 1987;102(1):127–41 (PubMed PMID: 3305708).
Article
CAS
Google Scholar
Balch CM, Riley LB, Bae YJ, Salmeron MA, Platsoucas CD, von Eschenbach A, et al. Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch Surg. 1990;125(2):200–5 (PubMed PMID: 1689143).
Article
CAS
Google Scholar
Koeck S, Kern J, Zwierzina M, Gamerith G, Lorenz E, Sopper S, et al. The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3(+)CD8(+) tumor infiltrating lymphocyte subpopulations. Oncoimmunology. 2017;6(6):e1323617 (PubMed PMID: 28680763. Pubmed Central PMCID: 5486171).
Article
Google Scholar
Mella M, Kauppila JH, Karihtala P, Lehenkari P, Jukkola-Vuorinen A, Soini Y, et al. Tumor infiltrating CD8(+) T lymphocyte count is independent of tumor TLR9 status in treatment naive triple negative breast cancer and renal cell carcinoma. Oncoimmunology. 2015;4(6):e1002726 (PubMed PMID: 26155410. Pubmed Central PMCID: 4485740).
Article
Google Scholar
Shibutani M, Maeda K, Nagahara H, Fukuoka T, Nakao S, Matsutani S, et al. The Prognostic Significance of the Tumor-infiltrating Programmed Cell Death-1(+) to CD8(+) Lymphocyte Ratio in Patients with Colorectal Cancer. Anticancer Res. 2017;37(8):4165–72 (PubMed PMID: 28739701).
CAS
Google Scholar
Kadota K, Nitadori JI, Ujiie H, Buitrago DH, Woo KM, Sima CS, et al. Prognostic Impact of Immune Microenvironment in Lung Squamous Cell Carcinoma: Tumor-Infiltrating CD10+ Neutrophil/CD20+ Lymphocyte Ratio as an Independent Prognostic Factor. J Thorac Oncol : Official Pub Int Assoc Study Lung Cancer. 2015;10(9):1301–10 (Pubmed Central PMCID: 4545576).
Article
CAS
Google Scholar
VaziriFard E, Ali Y, Wang XI, Saluja K, HC M, Wang L, et al. Tumor-Infiltrating Lymphocyte Volume Is a Better Predictor of Disease-Free Survival Than Stromal Tumor-Infiltrating Lymphocytes in Invasive Breast Carcinoma. American J Clin Pathol. 2019;152(5):656–65 (PubMed PMID: 31305879).
Article
Google Scholar
Robbins PF. Tumor-Infiltrating Lymphocyte Therapy and Neoantigens. Cancer J. 2017;23(2):138–43 (PubMed PMID: 28410302).
Article
CAS
Google Scholar
Garber K. Pursuit of tumor-infiltrating lymphocyte immunotherapy speeds up. Nat Biotechnol. 2019;37(9):969–71 (PubMed PMID: 31485043).
Article
Google Scholar
Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185(9):4977–82 (PubMed PMID: 20962266).
Article
CAS
Google Scholar
Zhao X, Kallakury B, Chahine JJ, Hartmann D, Zhang Y, Chen Y, et al. Surgical Resection of SCLC: Prognostic Factors and the Tumor Microenvironment. J Thorac Oncol : official publication of the International Association for the Study of Lung Cancer. 2019;14(5):914–23.
Article
CAS
Google Scholar
Vadasz Z, Toubi E. FoxP3 Expression in Macrophages, Cancer, and B Cells-Is It Real? Clin Rev Allergy Immunol. 2017;52(3):364–72 (PubMed PMID: 27339600).
Article
CAS
Google Scholar
Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T, et al. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection. Blood. 1998;92(4):1374–83 (PubMed PMID: 9694726).
Article
CAS
Google Scholar
Rezk SA, Zhao X, Weiss LM. Epstein-Barr virus (EBV)-associated lymphoid proliferations, a 2018 update. Hum Pathol. 2018;79:18–41 (PubMed PMID: 29885408).
Article
CAS
Google Scholar
Kim HJ, Ko YH, Kim JE, Lee SS, Lee H, Park G, et al. Epstein-Barr Virus-Associated Lymphoproliferative Disorders: Review and Update on 2016 WHO Classification. J Pathol Transl Med. 2017;51(4):352–8 (PubMed PMID: 28592786. Pubmed Central PMCID: 5525035).
Article
Google Scholar
Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol. 2016;7:1602 (PubMed PMID: 27826287. Pubmed Central PMCID: 5078142).
Article
Google Scholar
Yu F, Lu Y, Tao L, Jiang YY, Lin DC, Wang L, et al. Non-malignant epithelial cells preferentially proliferate from nasopharyngeal carcinoma biopsy cultured under conditionally reprogrammed conditions. Sci Rep. 2017;7(1):17359 (PubMed PMID: 29234119).
Article
Google Scholar
Lilja-Fischer JK, Ulhoi BP, Alsner J, Stougaard M, Thomsen MS, Busk M, et al. Characterization and radiosensitivity of HPV-related oropharyngeal squamous cell carcinoma patient-derived xenografts. Acta Oncol. 2019;58(10):1489–94 (PubMed PMID: 31510843).
Article
CAS
Google Scholar