Hu Q, Zhang B, Chen R, Fu C, Fu AJ, Li X, Fu J, Zhang L, Dong Z. JT: ZFHX3 is indispensable for ERbeta to inhibit cell proliferation via MYC downregulation in prostate cancer cells. Oncogenesis. 2019;8(4):28.
Article
Google Scholar
Jung CG, Kim HJ, Kawaguchi M, Khanna KK, Hida H, Asai K, Nishino H, Miura Y. Homeotic factor ATBF1 induces the cell cycle arrest associated with neuronal differentiation. Development. 2005;132(23):5137–45.
Article
CAS
Google Scholar
Berry FB, Miura Y, Mihara K, Kaspar P, Sakata N, Hashimoto-Tamaoki T, Tamaoki T. Positive and negative regulation of myogenic differentiation of C2C12 cells by isoforms of the multiple homeodomain zinc finger transcription factor ATBF1. J Biol Chem. 2001;276(27):25057–65.
Article
CAS
Google Scholar
Sun X, Fu X, Li J, Xing C, Martin DW, Zhang HH, Chen Z, Dong JT. Heterozygous deletion of Atbf1 by the cre-loxp system in mice causes preweaning mortality. Genesis. 2012;50(11):819–27.
Article
CAS
Google Scholar
Sun X, Xing C, Fu X, Li J, Zhang B, Frierson HF Jr, Dong JT. Additive effect of Zfhx3/Atbf1 and pten deletion on mouse Prostatic Tumorigenesis. J Genet Genomics. 2015;42(7):373–82.
Article
CAS
Google Scholar
Mabuchi M, Kataoka H, Miura Y, Kim TS, Kawaguchi M, Ebi M, Tanaka M, Mori Y, Kubota E, Mizushima T, et al. Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. Biochem Biophys Res Commun. 2010;398(2):321–5.
Article
CAS
Google Scholar
Fu C, An N, Liu J, A J, Zhang B, Liu M, Zhang Z, Fu L, Tian X, Wang D, et al. The transcription factor ZFHX3 is crucial for the angiogenic function of hypoxia-inducible factor 1alpha in liver cancer cells. J Biol Chem. 2020;295(20):7060–74.
Article
CAS
Google Scholar
Kataoka H, Miura Y, Kawaguchi M, Suzuki S, Okamoto Y, Ozeki K, Shimura T, Mizoshita T, Kubota E, Tanida S, et al. Expression and subcellular localization of AT motif binding factor 1 in colon tumours. Mol Med Rep. 2017;16(3):3095–102.
Article
CAS
Google Scholar
Zhang J, Zhou N, Lin A, Luo P, Chen X, Deng H, Kang S, Guo L, Zhu W, Zhang J. ZFHX3 mutation as a protective biomarker for immune checkpoint blockade in non-small cell lung cancer. Cancer Immunol Immunother. 2021;70(1):137–51.
Article
CAS
Google Scholar
Sun X, Frierson HF, Chen C, Li C, Ran Q, Otto KB, Cantarel BL, Vessella RL, Gao AC, Petros J, et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet. 2005;37(4):407–12.
Article
CAS
Google Scholar
Sun X, Li J, Sica G, Fan SQ, Wang Y, Chen Z, Muller S, Chen ZG, Fu X, Dong XY, et al. Interruption of nuclear localization of ATBF1 during the histopathologic progression of head and neck squamous cell carcinoma. Head Neck. 2013;35(7):1007–14.
Article
Google Scholar
Nishio E, Miura Y, Kawaguchi M, Morita A. Nuclear translocation of ATBF1 is a potential prognostic marker for skin cancer. Acta Dermatovenerol Croat. 2012;20(4):239–45.
CAS
Google Scholar
Kawaguchi M, Hara N, Bilim V, Koike H, Suzuki M, Kim TS, Gao N, Dong Y, Zhang S, Fujinawa Y, et al. A diagnostic marker for superficial urothelial bladder carcinoma: lack of nuclear ATBF1 (ZFHX3) by immunohistochemistry suggests malignant progression. BMC Cancer. 2016;16(1):805.
Article
Google Scholar
Li M, Fu X, Ma G, Sun X, Dong X, Nagy T, Xing C, Li J, Dong JT. Atbf1 regulates pubertal mammary gland development likely by inhibiting the pro-proliferative function of estrogen-ER signaling. PLoS ONE. 2012;7(12):e51283.
Article
CAS
Google Scholar
Li M, Zhao D, Ma G, Zhang B, Fu X, Zhu Z, Fu L, Sun X, Dong JT. Upregulation of ATBF1 by progesterone-PR signaling and its functional implication in mammary epithelial cells. Biochem Bioph Res Co. 2013;430(1):358–63.
Article
CAS
Google Scholar
Zhao D, Ma G, Zhang X, He Y, Li M, Han X, Fu L, Dong XY, Nagy T, Zhao Q, et al. Zinc finger homeodomain factor Zfhx3 is essential for mammary lactogenic differentiation by maintaining Prolactin Signaling Activity. J Biol Chem. 2016;291(24):12809–20.
Article
CAS
Google Scholar
Ma G, Gao A, Yang Y, He Y, Zhang X, Zhang B, Zhang Z, Li M, Fu X, Zhao D, et al. Zfhx3 is essential for progesterone/progesterone receptor signaling to drive ductal side-branching and alveologenesis in mouse mammary glands. J Genet Genomics. 2019;46(3):119–31.
Article
Google Scholar
Dong XY, Sun X, Guo P, Li Q, Sasahara M, Ishii Y, Dong JT. ATBF1 inhibits estrogen receptor (ER) function by selectively competing with AIB1 for binding to the ER in ER-positive breast cancer cells. J Biol Chem. 2010;285(43):32801–9.
Article
CAS
Google Scholar
Dong XY, Guo P, Sun X, Li Q, Dong JT. Estrogen up-regulates ATBF1 transcription but causes its protein degradation in estrogen receptor-alpha-positive breast cancer cells. J Biol Chem. 2011;286(16):13879–90.
Article
CAS
Google Scholar
Dong XY, Fu X, Fan S, Guo P, Su D, Dong JT. Oestrogen causes ATBF1 protein degradation through the oestrogen-responsive E3 ubiquitin ligase EFP. Biochem J. 2012;444(3):581–90.
Article
CAS
Google Scholar
Wu R, Fang J, Liu M, Liu AJ, Chen J, Li W, Ma J, Zhang G, Zhang Z. B et al: SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation. J Biol Chem. 2020;295(19):6741–53.
Article
CAS
Google Scholar
Cleton-Jansen AM, van Eijk R, Lombaerts M, Schmidt MK, Van’t Veer LJ, Philippo K, Zimmerman RM, Peterse JL, Smit VT, van Wezel T, et al. ATBF1 and NQO1 as candidate targets for allelic loss at chromosome arm 16q in breast cancer: absence of somatic ATBF1 mutations and no role for the C609T NQO1 polymorphism. BMC Cancer. 2008;8:105.
Article
Google Scholar
Roylance R, Gorman P, Papior T, Wan YL, Ives M, Watson JE, Collins C, Wortham N, Langford C, Fiegler H, et al. A comprehensive study of chromosome 16q in invasive ductal and lobular breast carcinoma using array CGH. Oncogene. 2006;25(49):6544–53.
Article
CAS
Google Scholar
Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, Hamaguchi M, Kawaguchi M, Miura Y, Iwase H. ATBF1-a messenger RNA expression is correlated with better prognosis in breast cancer. Clin Cancer Res. 2005;11(1):193–8.
Article
CAS
Google Scholar
Li M, Zhang A, Zheng Y, Li J, Zhao J. ATBF1 participates in dual functions of TGF-beta via regulation of Gene expression and protein translocalization. Biomolecules. 2020;10(5):807.
Article
Google Scholar
Li M, Zhang A, Li J, Zhou J, Zheng Y, Zhang C, Xia D, Mao H, Zhao J. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioact Mater. 2020;5(4):938–48.
Article
Google Scholar
Ji SF, Zhong L. [A preliminary functional study of AT motif binding factor 1 in colorectal cancer]. Nan Fang Yi Ke Da Xue Xue Bao. 2016;36(7):957–63.
CAS
Google Scholar
Kim CJ, Song JH, Cho YG, Cao Z, Lee YS, Nam SW, Lee JY, Park WS. Down-regulation of ATBF1 is a major inactivating mechanism in hepatocellular carcinoma. Histopathology. 2008;52(5):552–9.
Article
CAS
Google Scholar
Kai K, Zhang Z, Yamashita H, Yamamoto Y, Miura Y, Iwase H. Loss of heterozygosity at the ATBF1-A locus located in the 16q22 minimal region in breast cancer. BMC Cancer. 2008;8:262.
Article
Google Scholar
Rubio-Alarcon M, Camara-Checa A, Dago M, Crespo-Garcia T, Nieto-Marin P, Marin M, Merino JL, Toquero J, Salguero-Bodes R, Tamargo J, et al. Zfhx3 transcription factor represses the expression of SCN5A gene and decreases Sodium current density (INa). Int J Mol Sci. 2021;22(23):13031.
Article
CAS
Google Scholar
Cheng WL, Kao YH, Chao TF, Lin YK, Chen SA, Chen YJ. MicroRNA-133 suppresses ZFHX3-dependent atrial remodelling and arrhythmia. Acta Physiol (Oxf). 2019;227(3):e13322.
Article
CAS
Google Scholar
Kataoka H, Miura Y, Joh T, Seno K, Tada T, Tamaoki T, Nakabayashi H, Kawaguchi M, Asai K, Kato T, et al. Alpha-fetoprotein producing gastric cancer lacks transcription factor ATBF1. Oncogene. 2001;20(7):869–73.
Article
CAS
Google Scholar
Rakha EA, El-Sayed ME, Lee AH, Elston CW, Grainge MJ, Hodi Z, Blamey RW, Ellis IO. Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J Clin Oncol. 2008;26(19):3153–8.
Article
Google Scholar
Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12(4):207.
Article
Google Scholar
Ido A, Miura Y, Tamaoki T. Activation of ATBF1, a multiple-homeodomain zinc-finger gene, during neuronal differentiation of murine embryonal carcinoma cells. Dev Biol. 1994;163(1):184–7.
Article
CAS
Google Scholar
Kim TS, Kawaguchi M, Suzuki M, Jung CG, Asai K, Shibamoto Y, Lavin MF, Khanna KK, Miura Y. The ZFHX3 (ATBF1) transcription factor induces PDGFRB, which activates ATM in the cytoplasm to protect cerebellar neurons from oxidative stress. Dis Model Mech. 2011;3(11–12):752–62.
Google Scholar
Sun X, Li J, Dong FN, Dong JT. Characterization of nuclear localization and SUMOylation of the ATBF1 transcription factor in epithelial cells. PLoS ONE. 2014;9(3):e92746.
Article
Google Scholar
Li M, Zhang C, Zhong Y, Zhao J. Cellular localization of ATBF1 protein and its functional implication in breast epithelial cells. Biochem Biophys Res Commun. 2017;490(2):492–8.
Article
CAS
Google Scholar
Miura Y, Tam T, Ido A, Morinaga T, Miki T, Hashimoto T, Tamaoki T. Cloning and characterization of an ATBF1 isoform that expresses in a neuronal differentiation-dependent manner. J Biol Chem. 1995;270(45):26840–8.
Article
CAS
Google Scholar
Ishii Y, Kawaguchi M, Takagawa K, Oya T, Nogami S, Tamura A, Miura Y, Ido A, Sakata N, Hashimoto-Tamaoki T, et al. ATBF1-A protein, but not ATBF1-B, is preferentially expressed in developing rat brain. J Comp Neurol. 2003;465(1):57–71.
Article
CAS
Google Scholar
Uhm KO, Kim MJ, Kawaguchi M, Akatsu H, Miura Y, Misumi S, Hida H, Choi EK, Kim YS, Michikawa M, et al. ATBF1 is a novel amyloid-beta protein precursor (AbetaPP) binding protein that affects AbetaPP expression. J Alzheimers Dis. 2015;43(1):243–57.
Article
CAS
Google Scholar
Dong G, Ma G, Wu R, Liu J, Liu M, Gao A, Li X, Liu AJ, Zhang XZ, et al. ZFHX3 promotes the proliferation and Tumor Growth of ER-Positive breast Cancer cells likely by enhancing stem-like features and MYC and TBX3 transcription. Cancers (Basel). 2020;12(11):3415.
Article
CAS
Google Scholar
Ninomiya T, Mihara K, Fushimi K, Hayashi Y, Hashimoto-Tamaoki T, Tamaoki T. Regulation of the alpha-fetoprotein gene by the isoforms of ATBF1 transcription factor in human hepatoma. Hepatology. 2002;35(1):82–7.
Article
CAS
Google Scholar
Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y, Zhang X, Lu Z, Cui CP, Liu CH, et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 2021;31(3):291–311.
Article
CAS
Google Scholar
Zhou X, Gao C, Huang W, Yang M, Chen G, Jiang L, Gou F, Feng H, Ai N, Xu Y. High glucose induces sumoylation of Smad4 via SUMO2/3 in mesangial cells. Biomed Res Int. 2014;2014:782625.
Article
Google Scholar
Jiang R, Wang M, Shen X, Huang S, Han J, Li L, Xu Z, Jiang C, Zhou Q, Feng X. SUMO1 modification of IGF-1R combining with SNAI2 inhibited osteogenic differentiation of PDLSCs stimulated by high glucose. Stem Cell Res Ther. 2021;12(1):543.
Article
CAS
Google Scholar
Asem MS, Buechler S, Wates RB, Miller DL, Stack MS. Wnt5a Signaling in Cancer. Cancers (Basel). 2016;8(9):79.
Article
Google Scholar
McDonald SL, Silver A. The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009;101(2):209–14.
Article
CAS
Google Scholar
Kremenevskaja N, von Wasielewski R, Rao AS, Schofl C, Andersson T, Brabant G. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 2005;24(13):2144–54.
Article
CAS
Google Scholar
Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002;1(3):279–88.
Article
CAS
Google Scholar
Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W, Kikuchi A. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 2006;66(21):10439–48.
Article
CAS
Google Scholar
Prasad CP, Manchanda M, Mohapatra P, Andersson T. WNT5A as a therapeutic target in breast cancer. Cancer Metastasis Rev. 2018;37(4):767–78.
Article
CAS
Google Scholar
Dejmek J, Leandersson K, Manjer J, Bjartell A, Emdin SO, Vogel WF, Landberg G, Andersson T. Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res. 2005;11(2 Pt 1):520–8.
Article
CAS
Google Scholar