Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
Article
PubMed
Google Scholar
Aguiar Junior S, Oliveira MM de, Silva DRME, Mello CAL de, Calsavara VF, Curado MP. SURVIVAL OF PATIENTS WITH COLORECTAL CANCER IN A CANCER CENTER. Arq Gastroenterol. 2020;57:172–7.
Article
PubMed
Google Scholar
Kumar S, Burney IA, Zahid KF, Souza D, Belushi PC, Mufti MAL. TD, et al. Colorectal Cancer Patient Characteristics, Treatment and Survival in Oman–a Single Center Study. Asian Pac J Cancer Prev. 2015;16:4853–8.
Article
PubMed
Google Scholar
Maajani K, Khodadost M, Fattahi A, Shahrestanaki E, Pirouzi A, Khalili F, et al. Survival Rate of Colorectal Cancer in Iran: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev. 2019;20:13–21.
Article
PubMed
PubMed Central
Google Scholar
Baghestani AR, Daneshvar T, Pourhoseingholi MA, Asadzade H. Survival of colorectal cancer patients in the presence of competing-risk. Asian Pac J Cancer Prev. 2014;15:6253–5.
Article
PubMed
Google Scholar
Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet (London England). 2014;383:1490–502.
Article
Google Scholar
Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist. 2007;12:356–61.
Article
CAS
PubMed
Google Scholar
André T, Chibaudel B. [Aflibercept (Zaltrap(®)) approved in metastatic colorectal cancer]. Bull Cancer. 2013;100:1023–5.
Article
PubMed
Google Scholar
Ettrich TJ, Seufferlein T. Regorafenib. In: Recent Results in Cancer Research. Springer New York LLC. 2018. p. 45–56. https://doi.org/10.1007/978-3-319-91442-8_3.
Garrett CR, Eng C. Cetuximab in the treatment of patients with colorectal cancer. Expert Opin Biol Ther. 2011;11:937–49.
Article
CAS
PubMed
Google Scholar
Giusti RM, Shastri KA, Cohen MH, Keegan P, Pazdur R. FDA drug approval summary: panitumumab (Vectibix). Oncologist. 2007;12:577–83.
Article
CAS
PubMed
Google Scholar
Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Link W. Principles of Cancer Treatment and Anticancer Drug Development. Cham: Springer International Publishing; 2019.
Book
Google Scholar
Afrǎsânie VA, Marinca MV, Alexa-Stratulat T, Gafton B, Pǎduraru M, Adavidoaiei AM, et al. KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer-practical implications for the clinician. Radiology and Oncology. 2019;53.
Nguyen M, Tipping Smith S, Lam M, Liow E, Davies A, Prenen H, et al. An update on the use of immunotherapy in patients with colorectal cancer. Expert Rev Gastroenterol Hepatol. 2020;:1–14. https://doi.org/10.1080/17474124.2021.1845141.
Kanat O, Ertas H, Caner B. Contemporary treatment approaches for metastatic colorectal cancer driven by BRAF V600 mutations. World J Gastrointest Oncol. 2020;12:1080–90. https://doi.org/10.4251/wjgo.v12.i10.1080.
Article
PubMed
PubMed Central
Google Scholar
Tosi F, Sartore-Bianchi A, Lonardi S, Amatu A, Leone F, Ghezzi S, et al. Long-term Clinical Outcome of Trastuzumab and Lapatinib for HER2-positive Metastatic Colorectal Cancer. Clin Colorectal Cancer. 2020. https://doi.org/10.1016/j.clcc.2020.06.009.
Article
PubMed
Google Scholar
Sartore-Bianchi A, Lonardi S, Martino C, Fenocchio E, Tosi F, Ghezzi S, et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: The phase II HERACLES-B trial. ESMO Open. 2020;5. https://doi.org/10.1136/esmoopen-2020-000911.
Bruera G, Pepe F, Malapelle U, Pisapia P, Mas AD, Giacomo D, Di, et al. Prevalence of KRAS, NRAS and BRAF mutations detected by massive parallel sequencing and differential clinical outcome in metastatic colorectal cancer (MCRC) patients (pts) treated with first line FIr-B/FOx adding bevacizumab (BEV) to triplet chemotherapy. Ann Oncol. 2017;28:vi14.
Article
Google Scholar
Vaughn CP, Zobell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer. 2011;50:307–12.
Article
CAS
PubMed
Google Scholar
Li Z-N, Zhao L, Yu L-F, Wei M-J. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Gastroenterol Rep. 2020;8:192–205.
Article
Google Scholar
Sanchez-Ibarra HE, Jiang X, Gallegos-Gonzalez EY, Cavazos-González AC, Chen Y, Morcos F, et al. KRAS, NRAS, and BRAF mutation prevalence, clinicopathological association, and their application in a predictive model in Mexican patients with metastatic colorectal cancer: A retrospective cohort study. PLoS ONE. 2020;15:e0235490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bylsma LC, Gillezeau C, Garawin TA, Kelsh MA, Fryzek JP, Sangaré L, et al. Prevalence of RAS and BRAF mutations in metastatic colorectal cancer patients by tumor sidedness: A systematic review and meta-analysis. Cancer Med. 2020;9:1044–57.
Article
PubMed
Google Scholar
Buzdin A, Sorokin M, Garazha A, Glusker A, Aleshin A, Poddubskaya E, et al. RNA sequencing for research and diagnostics in clinical oncology. Semin Cancer Biol. 2019. https://doi.org/10.1016/j.semcancer.2019.07.010.
Article
PubMed
Google Scholar
Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther. 2015;14:847–56.
Article
CAS
PubMed
Google Scholar
van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009. https://doi.org/10.1056/NEJMoa021967.
Article
PubMed
Google Scholar
Buzdin A, Sorokin M, Garazha A, Sekacheva M, Kim E, Zhukov N, et al. Molecular pathway activation – New type of biomarkers for tumor morphology and personalized selection of target drugs. Semin Cancer Biol. 2018. https://doi.org/10.1016/j.semcancer.2018.06.003.
Article
PubMed
Google Scholar
SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Qual Control Consortium. 2014;32. https://doi.org/10.1038/nbt.2957.
Rodon J, Soria JC, Berger R, Miller WH, Rubin E, Kugel A, et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat Med. 2019;25:751–8. https://doi.org/10.1038/s41591-019-0424-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buzdin A, Sorokin M, Poddubskaya E, Borisov N. High-Throughput Mutation Data Now Complement Transcriptomic Profiling: Advances in Molecular Pathway Activation Analysis Approach in Cancer Biology. Cancer Inf. 2019;18:1176935119838844. https://doi.org/10.1177/1176935119838844.
Article
Google Scholar
Buzdin AA, Zhavoronkov AA, Korzinkin MB, Roumiantsev SA, Aliper AM, Venkova LS, et al. The OncoFinder algorithm for minimizing the errors introduced by the high-throughput methods of transcriptome analysis. Front Mol Biosci. 2014;1:8. https://doi.org/10.3389/fmolb.2014.00008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borisov N, Shabalina I, Tkachev V, Sorokin M, Garazha A, Pulin A, et al. Shambhala: a platform-agnostic data harmonizer for gene expression data. BMC Bioinformatics. 2019;20:66. https://doi.org/10.1186/s12859-019-2641-8.
Article
PubMed
PubMed Central
Google Scholar
Suntsova M, Gaifullin N, Allina D, Reshetun A, Li X, Mendeleeva L, et al. Atlas of RNA sequencing profiles for normal human tissues. Sci data. 2019;6:36. https://doi.org/10.1038/s41597-019-0043-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorokin M, Kholodenko R, Suntsova M, Malakhova G, Garazha A, Kholodenko I, et al. Oncobox Bioinformatical Platform for Selecting Potentially Effective Combinations of Target Cancer Drugs Using High-Throughput Gene Expression Data. Cancers (Basel). 2018;10:365. https://doi.org/10.3390/cancers10100365.
Article
CAS
Google Scholar
Poddubskaya EV, Baranova MP, Allina DO, Smirnov PY, Albert EA, Kirilchev AP, et al. Personalized prescription of tyrosine kinase inhibitors in unresectable metastatic cholangiocarcinoma. Exp Hematol Oncol. 2018;7:21. https://doi.org/10.1186/s40164-018-0113-x.
Article
PubMed
PubMed Central
Google Scholar
Buzdin A, Garazha A, Sorokin M, Glusker A, Aleshin A, Allina D, et al. RNA sequencing analysis for profiling activation of cancer-associated molecular pathways. J Clin Oncol. 2019;37 15_suppl:e13032–e13032.
Borisov N, Sorokin M, Garazha A, Buzdin A. Quantitation of molecular pathway activation using RNA sequencing data. In: Methods in molecular biology (Clifton NJ). 2019. p. In press. https://doi.org/10.1007/978-1-0716-0138-9_15.
Tkachev V, Sorokin M, Garazha A, Borisov N, Buzdin A. Oncobox method for scoring efficiencies of anticancer drugs based on gene expression data. In: Astakhova K, Bukhari SA, editors. Methods Mol Biol. New York: Springer US; 2020. pp. 235–55. https://doi.org/10.1007/978-1-0716-0138-9_17.
Chapter
Google Scholar
Poddubskaya E, Buzdin A, Garazha A, Sorokin M, Glusker A, Aleshin A, et al. Oncobox, gene expression-based second opinion system for predicting response to treatment in advanced solid tumors. J Clin Oncol. 2019;37 15_suppl:e13143–3.
Article
Google Scholar
Poddubskaya EV, Baranova MP, Allina DO, Sekacheva MI, Makovskaia LA, Kamashev DE, et al. Personalized prescription of imatinib in recurrent granulosa cell tumor of the ovary: case report. Cold Spring Harb Mol case Stud. 2019;5:a003434. https://doi.org/10.1101/mcs.a003434.
Article
PubMed
PubMed Central
Google Scholar
Moisseev A, Albert E, Lubarsky D, Schroeder D, Clark J. Transcriptomic and genomic testing to guide individualized treatment in chemoresistant gastric cancer case. Biomedicines. 2020;8. https://doi.org/10.3390/biomedicines8030067.
Poddubskaya E, Bondarenko A, Boroda A, Zotova E, Glusker A, Sletina S, et al. Transcriptomics-Guided Personalized Prescription of Targeted Therapeutics for Metastatic ALK-Positive Lung Cancer Case Following Recurrence on ALK Inhibitors. Front Oncol. 2019;9:1026. https://doi.org/10.3389/fonc.2019.01026.
Article
PubMed
PubMed Central
Google Scholar
Sorokin M, Poddubskaya E, Baranova M, Glusker A, Kogoniya L, Markarova E, et al. RNA sequencing profiles and diagnostic signatures linked with response to ramucirumab in gastric cancer. Cold Spring Harb Mol case Stud. 2020;6.
Trillet-Lenoir V, Freyer G, Kaemmerlen P, Fond A, Pellet O, Lombard-Bohas C, et al. Assessment of tumour response to chemotherapy for metastatic colorectal cancer: accuracy of the RECIST criteria. Br J Radiol. 2002;75:903–8.
Article
CAS
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42:D472–7. https://doi.org/10.1093/nar/gkt1102.
Article
CAS
PubMed
Google Scholar
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37 suppl_1:D674–9. https://doi.org/10.1093/nar/gkn653.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 2005;6:R2. https://doi.org/10.1186/gb-2004-6-1-r2.
Article
PubMed
Google Scholar
Nishimura D. BioCarta. Biotech Softw Internet Rep. 2001;2:117–20. https://doi.org/10.1089/152791601750294344.
Article
Google Scholar
Cancer Genome Atlas Research. Network JN, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20. https://doi.org/10.1038/ng.2764.
Article
CAS
Google Scholar
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015 2111. 2015;21:1350–6.
George B, Seals S, Aban I. Survival analysis and regression models. J Nucl Cardiol. 2014;21:686–94.
Article
PubMed
PubMed Central
Google Scholar
Singh R, Mukhopadhyay K. Survival analysis in clinical trials: Basics and must know areas. Perspect Clin Res. 2011;2:145–8.
Article
PubMed
PubMed Central
Google Scholar
Buzdin AA, Sorokin M, Borisov NM, Kuzmin D, Gudkov A, Zolotovskaia MA, et al. Algorithmic annotation of functional roles for components of 3044 human molecular pathways. Front Genet. 2021;12:139.
Google Scholar
Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006;28:1779–802.
Article
CAS
PubMed
Google Scholar
Browning DJ, Kaiser PK, Rosenfeld PJ, Stewart MW. Aflibercept for age-related macular degeneration: a game-changer or quiet addition? Am J Ophthalmol. 2012;154:222–6.
Article
CAS
PubMed
Google Scholar
Sharma T, Dhingra R, Singh S, Sharma S, Tomar P, Malhotra M, et al. Aflibercept: a novel VEGF targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple tumors. Mini Rev Med Chem. 2013;13:530–40.
Article
CAS
PubMed
Google Scholar
Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011;11:239–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Wang L, Zhou Z, Deng Q, Li L, Zhang M, et al. Leucovorin Enhances the Anti-cancer Effect of Bortezomib in Colorectal Cancer Cells. Sci Rep. 2017;7:682.
Article
PubMed
PubMed Central
Google Scholar
Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10:2298–308.
Article
CAS
PubMed
Google Scholar
Abdelaziz A, Vaishampayan U. Cabozantinib for the treatment of kidney cancer. Expert Rev Anticancer Ther. 2017;17:577–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee MS, Kopetz S. Current and Future Approaches to Target the Epidermal Growth Factor Receptor and Its Downstream Signaling in Metastatic Colorectal Cancer. Clin Colorectal Cancer. 2015;14:203–18.
Article
PubMed
Google Scholar
Goldberg RM. Cetuximab. Nat Rev Drug Discov. 2005;Suppl:10-1.
Google Scholar
Geng F, Wang Z, Yin H, Yu J, Cao B. Molecular Targeted Drugs and Treatment of Colorectal Cancer: Recent Progress and Future Perspectives. Cancer Biother Radiopharm. 2017;32:149–60.
Article
CAS
PubMed
Google Scholar
Forde PM, Rudin CM. Crizotinib in the treatment of non-small-cell lung cancer. Expert Opin Pharmacother. 2012;13:1195–201.
Article
CAS
PubMed
Google Scholar
Kazandjian D, Blumenthal GM, Chen H-Y, He K, Patel M, Justice R, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist. 2014;19:e5–11.
Article
PubMed
PubMed Central
Google Scholar
Lynch DH, Yang X-D. Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin Oncol. 2002;29(1 Suppl 4):47–50.
Article
CAS
PubMed
Google Scholar
Giusti RM, Cohen MH, Keegan P, Pazdur R. FDA review of a panitumumab (Vectibix) clinical trial for first-line treatment of metastatic colorectal cancer. Oncologist. 2009;14:284–90.
Article
CAS
PubMed
Google Scholar
Grothey A, Prager G, Yoshino T. The Mechanism of Action of Regorafenib in Colorectal Cancer: A Guide for the Community Physician. Clin Adv Hematol Oncol. 2019;17(Suppl 1):1–19.
PubMed
Google Scholar
Westenfeld R, Ketteler M, Brandenburg VM. Anti-RANKL therapy–implications for the bone-vascular-axis in CKD? Denosumab in post-menopausal women with low bone mineral density. Nephrol Dial Transplant. 2006;21:2075–7.
Article
CAS
PubMed
Google Scholar
Thosani S, Hu MI. Denosumab: a new agent in the management of hypercalcemia of malignancy. Future Oncol. 2015;11:2865–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.
Article
Google Scholar
Tkachev V, Sorokin M, Garazha A, Borisov N, Buzdin A, Tkachev V, Sorokin M, Garazha A, Borisov NBA, et al. Oncobox Method for Scoring Efficiencies of Anticancer Drugs Based on Gene Expression Data. Methods Mol Biol. 2020;2063:235–55.
Article
CAS
PubMed
Google Scholar
Chen L, Zhou Y, Tang X, Yang C, Tian Y, Xie R, et al. EGFR mutation decreases FDG uptake in non–small cell lung cancer via the NOX4/ROS/GLUT1 axis. Int J Oncol. 2019;54:370–80. https://doi.org/10.3892/ijo.2018.4626.
Article
CAS
PubMed
Google Scholar
Tanioka M, Fan C, Parker JS, Hoadley KA, Hu Z, Li Y, et al. Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer. Clin Cancer Res. 2018;24:5292–304. https://doi.org/10.1158/1078-0432.CCR-17-3431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Cheng G, Kang X, Xi Y, Zhu Y, Wang K, et al. Noninvasively evaluating the grading and IDH1 mutation status of diffuse gliomas by three-dimensional pseudo-continuous arterial spin labeling and diffusion-weighted imaging. Neuroradiology. 2018;60:693–702. https://doi.org/10.1007/s00234-018-2021-5.
Article
PubMed
Google Scholar
Zolotovskaia MA, Sorokin MI, Roumiantsev SA, Borisov NM, Buzdin AA. Pathway Instability Is an Effective New Mutation-Based Type of Cancer Biomarkers. Front Oncol. 2018;8:658. https://doi.org/10.3389/fonc.2018.00658.
Article
PubMed
Google Scholar
Lezhnina K, Kovalchuk O, Zhavoronkov AA, Korzinkin MB, Zabolotneva AA, Shegay PV, et al. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways. Oncotarget. 2014;5:9022–32. https://doi.org/10.18632/oncotarget.2493.
Article
PubMed
PubMed Central
Google Scholar
Borisov NM, Terekhanova NV, Aliper AM, Venkova LS, Smirnov PY, Roumiantsev S, et al. Signaling pathways activation profiles make better markers of cancer than expression of individual genes. Oncotarget. 2014;5:10198–205. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4259415&tool=pmcentrez&rendertype=abstract. Accessed 5 Oct 2015.
Green DM, Swets JA. Signal detection theory and psychophysics. R.E. Krieger Pub. Co; 1974.
Boyd JC. Mathematical tools for demonstrating the clinical usefulness of biochemical markers. Scand J Clin Lab Invest. 1997;57:46–63.
Article
Google Scholar
Harbig J, Sprinkle R, Enkemann SA. A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array. Nucleic Acids Res. 2005;33:e31.
Article
PubMed
PubMed Central
Google Scholar
Sorokin M, Poddubskaya E, Baranova M, Glusker A, Kogoniya L, Markarova E, et al. RNA sequencing profiles and diagnostic signatures linked with response to ramucirumab in gastric cancer. Mol Case Stud. 2020;:mcs.a004945. https://doi.org/10.1101/mcs.a004945.
Article
Google Scholar
Deng Y, Wang L, Tan S, Kim GP, Dou R, Chen D, et al. KRAS as a predictor of poor prognosis and benefit from postoperative FOLFOX chemotherapy in patients with stage II and III colorectal cancer. Mol Oncol. 2015;9:1341–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Hamo R, Jacob Berger A, Gavert N, Miller M, Pines G, Oren R, et al. Predicting and affecting response to cancer therapy based on pathway-level biomarkers. Nat Commun. 2020;11:3296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Estevez-Garcia P, Rivera F, Molina-Pinelo S, Benavent M, Gómez J, Limón ML, et al. Gene expression profile predictive of response to chemotherapy in metastatic colorectal cancer. Oncotarget. 2015;6:6151–9.
Article
PubMed
PubMed Central
Google Scholar
Sorokin M, Poddubskaya E, Baranova M, Glusker A, Kogoniya L, Markarova E, et al. RNA sequencing profiles and diagnostic signatures linked with response to ramucirumab in gastric cancer. Cold Spring Harb Mol case Stud. 2020;6.
Liu J, Cho YB, Hong HK, Wu S, Ebert PJ, Bray SM, et al. Molecular dissection of CRC primary tumors and their matched liver metastases reveals critical role of immune microenvironment, EMT and angiogenesis in cancer metastasis. Sci Rep. 2020;10:10725. https://doi.org/10.1038/s41598-020-67842-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pentheroudakis G, Kotoula V, Fountzilas E, Kouvatseas G, Basdanis G, Xanthakis I, et al. A study of gene expression markers for predictive significance for bevacizumab benefit in patients with metastatic colon cancer: a translational research study of the Hellenic Cooperative Oncology Group (HeCOG). BMC Cancer. 2014;14:111. https://doi.org/10.1186/1471-2407-14-111.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Zio D, Cianfanelli V, Cecconi F. New insights into the link between DNA damage and apoptosis. Antioxid Redox Signal. 2013;19:559–71.
Article
PubMed
PubMed Central
Google Scholar
Kotulak A, Wronska A, Kobiela J, Godlewski J, Stanislawowski M, Wierzbicki P. Decreased expression of p73 in colorectal cancer. Folia Histochem Cytobiol. 2016;54:166–70. https://doi.org/10.5603/FHC.a2016.0018.
Article
CAS
PubMed
Google Scholar
Uboveja A, Satija YK, Siraj F, Sharma I, Saluja D. p73 – NAV3 axis plays a critical role in suppression of colon cancer metastasis. Oncogenesis. 2020;9:12. https://doi.org/10.1038/s41389-020-0193-4.
Article
CAS
PubMed
PubMed Central
Google Scholar