European Commission. ECIS - European Cancer Information System; 2021. Accessed 25 Jun 2021. https://ecis.jrc.ec.europa.eu/.
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
Article
Google Scholar
Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63.
Article
CAS
Google Scholar
Moe A, Hayne D. Transrectal ultrasound biopsy of the prostate: does it still have a role in prostate cancer diagnosis? Transl Androl Urol. 2020;9(6):3018–24.
Article
Google Scholar
Haskins G, Kruecker J, Kruger U, Xu S, Pinto PA, Wood BJ, et al. Learning deep similarity metric for 3D MR-TRUS image registration. Int J Comput Assist Radiol Surg. 2019;14(3):417–25.
Article
Google Scholar
Warlick C, Futterer J, Maruf M, George AK, Rastinehad AR, Pinto PA, et al. Beyond transrectal ultrasound-guided prostate biopsies: available techniques and approaches. World J Urol. 2019;37:419–27.
Article
Google Scholar
Cornud F, Brolis L, Delongchamps NB, Portalez D, Malavaud B, Renard-Penna R, et al. TRUS-MRI image registration: a paradigm shift in the diagnosis of significant prostate cancer. Abdom Imaging. 2013;38(6):1447–63.
Article
CAS
Google Scholar
Sonn GA, Natarajan S, Margolis DJA, MacAiran M, Lieu P, Huang J, et al. Targeted biopsy in the detection of prostate cancer using an office based magnetic resonance ultrasound fusion device. J Urol. 2013;189(1):86–91.
Article
Google Scholar
Portalez D, Mozer P, Cornud F, Renard-Penna R, Misrai V, Thoulouzan M, et al. Validation of the European Society of Urogenital Radiology scoring system for prostate cancer diagnosis on multiparametric magnetic resonance imaging in a cohort of repeat biopsy patients. Eur Urol. 2012;62(6):986–96.
Article
Google Scholar
Shen F, Shinohara K, Kumar D, Khemka A, Simoneau AR, Werahera PN, et al. Three-dimensional sonography with needle tracking: role in diagnosis and treatment of prostate cancer. J Ultrasound Med. 2008;27(6):895–905.
Article
Google Scholar
Xu S, Kruecker J, Turkbey B, Glossop N, Singh AK, Choyke P, et al. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surg. 2008;13(5):255–64.
Article
Google Scholar
Penzkofer T, Tuncali K, Fedorov A, Song S-E, Tokuda J, Fennessy FM, et al. Transperineal in-bore 3-T MR imaging-guided prostate biopsy: a prospective clinical observation study. Radiology. 2015;274(1):170–80.
Article
Google Scholar
Hale GR, Czarniecki M, Cheng A, Bloom JB, Seifabadi R, Gold SA, et al. Comparison of elastic and rigid registration during magnetic resonance imaging/ultrasound fusion-guided prostate biopsy: a multi-operator phantom study. J Urol. 2018;200(5):1114–21.
Article
Google Scholar
Delongchamps NB, Peyromaure M, Schull A, Beuvon F, Bouazza N, Flam T, et al. Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol. 2013;189(2):493–9.
Article
Google Scholar
Mitsuhashi N, Fujieda K, Tamura T, Kawamoto S, Takagi T, Okubo K. BodyParts3D: 3D structure database for anatomical concepts. Nucleic Acids Res. 2009;37(SUPPL. 1):D782–5.
Article
CAS
Google Scholar
CGAL. The computational geometry algorithms library; 2017. Accessed 07 May 2021. http://www.cgal.org.
Google Scholar
Geuzaine C, Remacle JF. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng. 2009;79(11):1309–31.
Article
Google Scholar
Electricité de France. Finite element code_aster , Analysis of Structures and Thermomechanics for Studies and Research; 1989-2017. Open-source on www.code-aster.org.
Islam T, Tang S, Liverani C, Saha S, Tasciotti E, Righetti R. Non-invasive imaging of Young’s modulus and Poisson’s ratio in cancers in vivo. Sci Rep. 2020;10(1) Article number 7266:1–12.
Wang Y, Ni D, Qin J, Xu M, Xie X, Heng PA. Patient-specific deformation modelling via elastography: application to image-guided prostate interventions. Sci Rep. 2016;6 Article number 27386:1–10.
Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260–74.
Article
CAS
Google Scholar
Li C, Guan G, Zhang F, Song S, Wang RK, Huang Z, et al. Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves. Biomed Optics Express. 2014;5(12):4313–28.
Article
Google Scholar
Christensen MB, Oberg K, Wolchok JC. Tensile properties of the rectal and sigmoid colon: a comparative analysis of human and porcine tissue. SpringerPlus. 2015;4(1) Article number 142:1–10.
Hensel JM, Ménard C, Chung PW, Milosevic MF, Kirilova A, Moseley JL, et al. Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning. Int J Radiat Oncol Biol Phys. 2007;68(5):1522–8.
Article
Google Scholar
Chai X, van Herk M, van de Kamer JB, Hulshof MCCM, Remeijer P, Lotz HT, et al. Finite element based bladder modeling for image-guided radiotherapy of bladder cancer. Med Phys. 2011;38(1):142–50.
Article
Google Scholar
Brock KK, Ménard C, Hensel J, Jaffray DA. A multi-organ biomechanical model to analyze prostate deformation due to large deformation of the rectum. In: Medical Imaging 2006: Physiology, Function, and Structure from Medical Images. Proceedings of the SPIE. 6143: International Society for Optics and Photonics; 2006. p. 360–9.
Google Scholar
Ramezani M, Klima S, Clerc L, de la Herverie P, Campo J, Le Joncour JB, et al. In silico pelvis and sacroiliac joint motion: refining a model of the human osteoligamentous pelvis for assessing physiological load deformation using an inverted validation approach. Biomed Res Int. 2019;2019 Article number 3973170:1–12.
Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019;76(3):340–51.
Article
Google Scholar
American College of Radiology. Prostate Imaging Reporting & Data System (PI-RADS). Accessed 25 Nov 2021. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS.
Creative commons attribution –NonCommercial-NoDerivatives 4.0 international license. Accessed 25 Nov 2021. https://creativecommons.org/licenses/by-nc-nd/4.0/.
Igarasihi R, Koizumi N, Nishiyama Y, Tomita K, Shigenari Y, Shoji S. Sagittal alignment in an MR-TRUS fusion biopsy using only the prostate contour in the axial image. ROBOMECH J. 2020;7 Article number 4:1–7.
Mohamed A, Davatzikos C, Taylor R. A combined statistical and biomechanical model for estimation of intra-operative prostate deformation. Lect Notes Comput Sci. 2002;2489:452–60.
Article
Google Scholar
Hu Y, van den Boom R, Carter T, Taylor Z, Hawkes D, Ahmed HU, et al. A comparison of the accuracy of statistical models of prostate motion trained using data from biomechanical simulations. Prog Biophys Mol Biol. 2010;103:262–72.
Article
Google Scholar
Bharatha A, Hirose M, Hata N, Warfield SK, Ferrant M, Zou KH, et al. Evaluation of three-dimensional finite element-based deformable registration of pre- and intraoperative prostate imaging. Med Phys. 2001;28(12):2551–60.
Article
CAS
Google Scholar
Marchal M, Promayon E, Troccaz J. Simulating prostate surgical procedures with a discrete soft tissue model. In: Mendoza C, Navazo I, editors. 3rd workshop in virtual reality interactions and physical simulations, VRIPHYS 2006: The Eurographics Association; 2006. p. 109–18.
Google Scholar
Yan D, Jaffray DA, Wong JW. A model to accumulate fractionated dose in a deforming organ. Int J Radiat Oncol Biol Phys. 1999;44(3):665–75.
Article
CAS
Google Scholar
Keros L, Bernier V, Aletti P, Marchesi V, Wolf D, Noel A. Qualitative estimation of pelvic organ interactions and their consequences on prostate motion: study on a deceased person. Med Phys. 2006;33(6):1902–10.
Article
Google Scholar
Boubaker MB, Haboussi M, Ganghoffer JF, Aletti P. Predictive model of the prostate motion in the context of radiotherapy: a biomechanical approach relying on urodynamic data and mechanical testing. J Mech Behav Biomed Mater. 2015;49:30–42.
Article
Google Scholar
Wu G, Kim M, Wang Q, Munsell BC, Shen D. Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans Biomed Eng. 2016;63(7):1505–16.
Article
Google Scholar
Checcucci E, Autorino R, Cacciamani GE, Amparore D, De Cillis S, Piana A, et al. Artificial intelligence and neural networks in urology: current clinical applications. Minerva Urol Nefrol. 2020 Feb;72(1):49–57.
Article
Google Scholar
Moldovan P, Udrescu C, Ravier E, Souchon R, Rabilloud M, Bratan F, et al. Accuracy of elastic fusion of prostate magnetic resonance and transrectal ultrasound images under routine conditions: a prospective multi-operator study. PLoS One. 2016;11(12):e0169120:1–11.