Kroenke CH, Chen WY, Rosner B, Holmes MD. Weight, weight gain, and survival after breast cancer diagnosis. J Clin Oncol. 2005;23(7):1370–8. https://doi.org/10.1200/JCO.2005.01.079.
Article
PubMed
Google Scholar
Tartter PI, Papatestas AE, Ioannovich J, Mulvihill MN, Lesnick G, Aufses AH Jr. Cholesterol and obesity as prognostic factors in breast cancer. Cancer. 1981;47(9):2222–7. https://doi.org/10.1002/1097-0142(19810501)47:9<2222::aid-cncr2820470919>3.0.co;2-5.
Article
CAS
PubMed
Google Scholar
Caan BJ, Kwan ML, Hartzell G, Castillo A, Slattery ML, Sternfeld B, et al. Pre-diagnosis body mass index, post-diagnosis weight change, and prognosis among women with early stage breast cancer. Cancer Causes Control. 2008;19(10):1319–28. https://doi.org/10.1007/s10552-008-9203-0.
Article
PubMed
PubMed Central
Google Scholar
Dawood S, Broglio K, Gonzalez-Angulo AM, Kau SW, Islam R, Hortobagyi GN, et al. Prognostic value of body mass index in locally advanced breast cancer. Clin Cancer Res. 2008;14(6):1718–25. https://doi.org/10.1158/1078-0432.CCR-07-1479.
Article
PubMed
Google Scholar
Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol. 2002;20(1):42–51. https://doi.org/10.1200/JCO.2002.20.1.42.
Article
CAS
PubMed
Google Scholar
McTiernan A, Rajan KB, Tworoger SS, Irwin M, Bernstein L, Baumgartner R, et al. Adiposity and sex hormones in postmenopausal breast cancer survivors. J Clin Oncol. 2003;21(10):1961–6. https://doi.org/10.1200/JCO.2003.07.057.
Article
CAS
PubMed
Google Scholar
Orecchioni S, Reggiani F, Talarico G, Bertolini F. Mechanisms of obesity in the development of breast cancer. Discov Med. 2015;20(109):121–8.
PubMed
Google Scholar
Harvey AE, Lashinger LM, Hursting SD. The growing challenge of obesity and cancer: an inflammatory issue. Ann N Y Acad Sci. 2011;1229(1):45–52. https://doi.org/10.1111/j.1749-6632.2011.06096.x.
Article
CAS
PubMed
Google Scholar
Hursting SD, Dunlap SM. Obesity, metabolic dysregulation, and cancer: a growing concern and an inflammatory (and microenvironmental) issue. Ann N Y Acad Sci. 2012;1271(1):82–7. https://doi.org/10.1111/j.1749-6632.2012.06737.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Kruijsdijk RC, van der Wall E, Visseren FL. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev. 2009;18(10):2569–78. https://doi.org/10.1158/1055-9965.EPI-09-0372.
Article
CAS
PubMed
Google Scholar
Fontanella C, Lederer B, Gade S, Vanoppen M, Blohmer JU, Costa SD, et al. Impact of body mass index on neoadjuvant treatment outcome: a pooled analysis of eight prospective neoadjuvant breast cancer trials. Breast Cancer Res Treat. 2015;150(1):127–39. https://doi.org/10.1007/s10549-015-3287-5.
Article
CAS
PubMed
Google Scholar
Raman R, Mott SL, Schroeder MC, Phadke S, El Masri J, Thomas A. Effect of body mass index- and actual weight-based neoadjuvant chemotherapy doses on pathologic complete response in operable breast Cancer. Clin Breast Cancer. 2016;16(6):480–6. https://doi.org/10.1016/j.clbc.2016.06.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Litton JK, Gonzalez-Angulo AM, Warneke CL, Buzdar AU, Kau SW, Bondy M, et al. Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. J Clin Oncol. 2008;26(25):4072–7. https://doi.org/10.1200/JCO.2007.14.4527.
Article
PubMed
PubMed Central
Google Scholar
Chen S, Chen CM, Zhou Y, Zhou RJ, Yu KD, Shao ZM. Obesity or overweight is associated with worse pathological response to neoadjuvant chemotherapy among Chinese women with breast cancer. PLoS One. 2012;7(7):e41380. https://doi.org/10.1371/journal.pone.0041380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26(2):259–71. https://doi.org/10.1093/annonc/mdu450.
Article
CAS
PubMed
Google Scholar
Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8(3):151–60. https://doi.org/10.1038/nrclinonc.2010.223.
Article
CAS
PubMed
Google Scholar
Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. https://doi.org/10.1038/nrc3245.
Article
CAS
PubMed
Google Scholar
Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432–3. https://doi.org/10.1126/science.342.6165.1432.
Article
CAS
PubMed
Google Scholar
Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66. https://doi.org/10.1200/JCO.2013.55.0491.
Article
PubMed
PubMed Central
Google Scholar
Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91. https://doi.org/10.1200/JCO.2014.58.1967.
Article
CAS
PubMed
Google Scholar
Asano Y, Kashiwagi S, Goto W, Takada K, Takahashi K, Hatano T, et al. Prediction of treatment response to neoadjuvant chemotherapy in breast Cancer by subtype using tumor-infiltrating lymphocytes. Anticancer Res. 2018;38(4):2311–21. https://doi.org/10.21873/anticanres.12476.
Article
PubMed
Google Scholar
Ohtani H, Mori-Shiraishi K, Nakajima M, Ueki H. Defining lymphocyte-predominant breast cancer by the proportion of lymphocyte-rich stroma and its significance in routine histopathological diagnosis. Pathol Int. 2015;65(12):644–51. https://doi.org/10.1111/pin.12355.
Article
PubMed
PubMed Central
Google Scholar
Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast Cancer subtypes: a systematic review. JAMA Oncol. 2016;2(10):1354–60. https://doi.org/10.1001/jamaoncol.2016.1061.
Article
PubMed
Google Scholar
Niraula S, Ocana A, Ennis M, Goodwin PJ. Body size and breast cancer prognosis in relation to hormone receptor and menopausal status: a meta-analysis. Breast Cancer Res Treat. 2012;134(2):769–81. https://doi.org/10.1007/s10549-012-2073-x.
Article
CAS
PubMed
Google Scholar
Ando S, Gelsomino L, Panza S, Giordano C, Bonofiglio D, Barone I, et al. Obesity, leptin and breast Cancer: epidemiological evidence and proposed mechanisms. Cancers (Basel). 2019;11(1). https://doi.org/10.3390/cancers11010062.
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast Cancer 2011. Ann Oncol. 2011;22(8):1736–47. https://doi.org/10.1093/annonc/mdr304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(3):188–94. https://doi.org/10.1093/jnci/dji021.
Article
PubMed
Google Scholar
Mieog JS, van der Hage JA, van de Velde CJ. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev. 2007;2:CD005002. https://doi.org/10.1002/14651858.CD005002.pub2.
Article
Google Scholar
Kawajiri H, Takashima T, Onoda N, Kashiwagi S, Noda S, Ishikawa T, et al. Efficacy and feasibility of neoadjuvant chemotherapy with FEC 100 followed by weekly paclitaxel for operable breast cancer. Oncol Lett. 2012;4(4):612–6. https://doi.org/10.3892/ol.2012.801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. https://doi.org/10.1016/j.ejca.2008.10.026.
Article
CAS
PubMed
Google Scholar
Kashiwagi S, Onoda N, Asano Y, Kurata K, Morisaki T, Noda S, et al. Partial mastectomy using manual blunt dissection (MBD) in early breast cancer. BMC Surg. 2015;15(1):117. https://doi.org/10.1186/s12893-015-0102-5.
Article
PubMed
PubMed Central
Google Scholar
Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B. Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and bowel project B-18. J Natl Cancer Inst Monogr. 2001;30(30):96–102. https://doi.org/10.1093/oxfordjournals.jncimonographs.a003469.
Article
Google Scholar
Kashiwagi S, Asano Y, Goto W, Takada K, Takahashi K, Noda S, et al. Use of tumor-infiltrating lymphocytes (TILs) to predict the treatment response to eribulin chemotherapy in breast cancer. PLoS One. 2017;12(2):e0170634. https://doi.org/10.1371/journal.pone.0170634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gennari R, Curigliano G, Rotmensz N, Robertson C, Colleoni M, Zurrida S, et al. Breast carcinoma in elderly women: features of disease presentation, choice of local and systemic treatments compared with younger postmenopasual patients. Cancer. 2004;101(6):1302–10. https://doi.org/10.1002/cncr.20535.
Article
PubMed
Google Scholar
Robinson B, Currie M, Phillips E, Dachs G, Strother M, Morrin H, et al. Body mass index (BMI): association with clinicopathological factors and outcome of women with newly diagnosed breast cancer in New Zealand. N Z Med J. 2017;130(1451):46–56.
PubMed
Google Scholar
Lee KH, Keam B, Im SA, Kim TY, Han SW, Oh DY, et al. Body mass index is not associated with treatment outcomes of breast cancer patients receiving neoadjuvant chemotherapy: korean data. J Breast Cancer. 2012;15(4):427–33. https://doi.org/10.4048/jbc.2012.15.4.427.
Article
PubMed
PubMed Central
Google Scholar
Jeon YW, Kang SH, Park MH, Lim W, Cho SH, Suh YJ. Relationship between body mass index and the expression of hormone receptors or human epidermal growth factor receptor 2 with respect to breast cancer survival. BMC Cancer. 2015;15(1):865. https://doi.org/10.1186/s12885-015-1879-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawai M, Tomotaki A, Miyata H, Iwamoto T, Niikura N, Anan K, et al. Body mass index and survival after diagnosis of invasive breast cancer: a study based on the Japanese National Clinical Database-Breast Cancer Registry. Cancer Med. 2016;5(6):1328–40. https://doi.org/10.1002/cam4.678.
Article
PubMed
PubMed Central
Google Scholar
Lote H, Sharp A, Redana S, Papadimitraki E, Capelan M, Ring A. Febrile neutropenia rates according to body mass index and dose capping in women receiving chemotherapy for early breast Cancer. Clin Oncol (R Coll Radiol). 2016;28(9):597–603. https://doi.org/10.1016/j.clon.2016.02.003.
Article
CAS
Google Scholar
Farr A, Stolz M, Baumann L, Bago-Horvath Z, Oppolzer E, Pfeiler G, et al. The effect of obesity on pathological complete response and survival in breast cancer patients receiving uncapped doses of neoadjuvant anthracycline-taxane-based chemotherapy. Breast. 2017;33:153–8. https://doi.org/10.1016/j.breast.2017.04.001.
Article
PubMed
Google Scholar
Chung IY, Lee JW, Lee JS, Park YR, Min YH, Lee Y, et al. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer. PLoS One. 2017;12(3):e0170311. https://doi.org/10.1371/journal.pone.0170311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gondo N, Sawaki M, Hattori M, Yoshimura A, Kotani H, Adachi Y, et al. Impact of BMI for clinical outcomes in Japanese breast cancer patients. Jpn J Clin Oncol. 2020;50(3):230–40. https://doi.org/10.1093/jjco/hyz175.
Article
PubMed
Google Scholar
Moon HG, Han W, Noh DY. Underweight and breast cancer recurrence and death: a report from the Korean breast Cancer society. J Clin Oncol. 2009;27(35):5899–905. https://doi.org/10.1200/JCO.2009.22.4436.
Article
PubMed
Google Scholar
Wang K, Wu YT, Zhang X, Chen L, Zhu WM, Zhang AJ, et al. Clinicopathologic and prognostic significance of body mass index (BMI) among breast Cancer patients in Western China: a retrospective multicenter cohort based on Western China clinical cooperation group (WCCCG). Biomed Res Int. 2019;2019:3692093–14. https://doi.org/10.1155/2019/3692093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nichols HB, Trentham-Dietz A, Egan KM, Titus-Ernstoff L, Holmes MD, Bersch AJ, et al. Body mass index before and after breast cancer diagnosis: associations with all-cause, breast cancer, and cardiovascular disease mortality. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1403–9. https://doi.org/10.1158/1055-9965.EPI-08-1094.
Article
PubMed
PubMed Central
Google Scholar
Chen B, Lai J, Guo L, Dai D, Chen R, Wei G, et al. Adverse effects of being underweight on young female breast cancer patients with lymph node metastases. J Cancer. 2020;11(7):1976–84. https://doi.org/10.7150/jca.38567.
Article
PubMed
PubMed Central
Google Scholar
Kim JY, Lee DW, Lee KH, Min A, Ryu HS, Lee HB, et al. Prognostic role of body mass index is different according to menopausal status and tumor subtype in breast cancer patients. Breast Cancer Res Treat. 2019;176(2):453–60. https://doi.org/10.1007/s10549-019-05249-1.
Article
PubMed
Google Scholar
Kawai M, Minami Y, Nishino Y, Fukamachi K, Ohuchi N, Kakugawa Y. Body mass index and survival after breast cancer diagnosis in Japanese women. BMC Cancer. 2012;12(1):149. https://doi.org/10.1186/1471-2407-12-149.
Article
PubMed
PubMed Central
Google Scholar
Abubakar M, Sung H, Bcr D, Guida J, Tang TS, Pfeiffer RM, et al. Breast cancer risk factors, survival and recurrence, and tumor molecular subtype: analysis of 3012 women from an indigenous Asian population. Breast Cancer Res. 2018;20(1):114. https://doi.org/10.1186/s13058-018-1033-8.
Article
PubMed
PubMed Central
Google Scholar
Zhang M, Cai H, Bao P, Xu W, Qin G, Shu XO, et al. Body mass index, waist-to-hip ratio and late outcomes: a report from the Shanghai breast Cancer survival study. Sci Rep. 2017;7(1):6996. https://doi.org/10.1038/s41598-017-07320-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cunningham-Rundles S, McNeeley DF, Moon A. Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol. 2005;115(6):1119–28; quiz 1129. https://doi.org/10.1016/j.jaci.2005.04.036.
Article
CAS
PubMed
Google Scholar
Chirumbolo S. Vitamin D3 in cancer prevention and therapy: the nutritional issue. Horm Mol Biol Clin Invest. 2015;23(3):71–8. https://doi.org/10.1515/hmbci-2015-0011.
Article
CAS
Google Scholar
Giuseppe F, François R, Anne-SH LJ, Hans W, Jan A, Kevin P, et al. Body mass index and tumor-infiltrating lymphocytes in triple-negative breast Cancer. J Natl Cancer Inst. 2021;113(2):146–53. https://doi.org/10.1093/jnci/djaa090.
Article
CAS
Google Scholar
Ziming W, Ethan GA, Jesus IL, Cordelia D, Lam TK, Catherine TL, et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med. 2019;25(1):141–51. https://doi.org/10.1038/s41591-018-0221-5.
Article
CAS
Google Scholar
Nora LS, Neil MI, Rohan B, Akanksha V, Maxine SJ, Dilip DG, et al. Obesity-associated extracellular matrix remodeling promotes a macrophage phenotype similar to tumor-associated macrophages. Am J Pathol. 2019;189(10):2019–35. https://doi.org/10.1016/j.ajpath.2019.06.005.
Article
CAS
Google Scholar
Payal T, Ariane B, Chang C, Kelly QS, Guolin Z, Yanfei X, et al. Metabolically activated adipose tissue macrophages link obesity to triple-negative breast cancer. J Exp Med. 2019;216(6):1345–58. https://doi.org/10.1084/jem.20181616.
Article
CAS
Google Scholar
Chlebowski RT, Aiello E, McTiernan A. Weight loss in breast cancer patient management. J Clin Oncol. 2002;20(4):1128–43. https://doi.org/10.1200/JCO.2002.20.4.1128.
Article
PubMed
Google Scholar
Thivat E, Therondel S, Lapirot O, Abrial C, Gimbergues P, Gadea E, et al. Weight change during chemotherapy changes the prognosis in non metastatic breast cancer for the worse. BMC Cancer. 2010;10(1):648. https://doi.org/10.1186/1471-2407-10-648.
Article
PubMed
PubMed Central
Google Scholar
Nikolaidi A, Kotoula V, Koliou GA, Giannoulatou E, Papadopoulou K, Zagouri F, et al. Tumor mutational patterns and infiltrating lymphocyte density in young and elderly patients with breast Cancer. Cancer Genomics Proteomics. 2020;17(2):181–93. https://doi.org/10.21873/cgp.20179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alessio C, Melissa B, Sebastiano B, Katia C, Daniele S, Fabiana P, et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J Immunother Cancer. 2019;7(1):57. https://doi.org/10.1186/s40425-019-0527-y.
Article
Google Scholar
Ganessan K, John OM, Arduino AM, Andrew R, Ashley MH, Michael JS. Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung Cancer. JAMA Oncol. 2020;6(4):512–8. https://doi.org/10.1001/jamaoncol.2019.5241.
Article
Google Scholar
Angela E, Antonio M, Vincenzo B, Samuele F, Stefania M, Giulia V, et al. Body mass index, adiposity and tumour infiltrating lymphocytes as prognostic biomarkers in patients treated with immunotherapy: a multi-parametric analysis. Eur J Cancer. 2021;145:197–209. https://doi.org/10.1016/j.ejca.2020.12.028.
Article
CAS
Google Scholar