Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science. 1995;268:884–6.
Article
CAS
PubMed
Google Scholar
Bouras T, Frauman AG. Expression of the prostate cancer metastasis suppressor gene KAI1 in primary prostate cancers: a biphasic relationship with tumour grade. J Pathol. 1999;188:382–8.
Article
CAS
PubMed
Google Scholar
Tricoli JV, Schoenfeldt M, Conley BA. Detection of prostate cancer and predicting progression: current and future diagnostic markers. Clin Cancer Res. 2004;10:3943–53.
Article
PubMed
Google Scholar
Ueda T, Ichikawa T, Tamaru J, Mikata A, Akakura K, Akimoto S, et al. Expression of the KAI1 protein in benign prostatic hyperplasia and prostate cancer. Am J Pathol. 1996;149:1435–40.
CAS
PubMed
PubMed Central
Google Scholar
Hinoda Y, Adachi Y, Takaoka A, Mitsuchi H, Satoh Y, Itoh F, et al. Decreased expression of the metastasis suppressor gene KAI1 in gastric cancer. Cancer Lett. 1998;129:229–34.
Article
CAS
PubMed
Google Scholar
Lombardi DP, Geradts J, Foley JF, Chiao C, Lamb PW, Barrett JC. Loss of KAI1expression in the progression of colorectal cancer. Cancer Res. 1999;59:5724–31.
CAS
PubMed
Google Scholar
Takaoka A, Hinoda Y, Satoh S, Adachi Y, Itoh F, Adachi M, et al. Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAI1 gene. Oncogene. 1998;16:1443–53.
Article
CAS
PubMed
Google Scholar
Liu FS, Chen JT, Dong JT, Hsieh YT, Lin AJ, Ho ES, et al. KAI1 metastasis suppressor gene is frequently down-regulated in cervical carcinoma. Am J Pathol. 2001;159:1629–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindl M, Birner P, Bachtiary B, Breitenecker G, Selzer E, Oberhuber G. KAI1 metastasis suppressor protein in cervical cancer. Am J Pathol. 2002;160:1542–3.
Article
PubMed
PubMed Central
Google Scholar
Yang X, Wei L, Tang C, Slack R, Montgomery E, Lippman M. KAI1protein is down-regulated. During the progression of human breast cancer. Clin Cancer Res. 2002;6:3424–9.
Google Scholar
Yang X, Welch DR, Phillips KK, Weissman BE, Wei LL. KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Lett. 1997;119:149–55.
Article
CAS
PubMed
Google Scholar
Geradts J, Maynard R, Birrer MJ, Hendricks D, Abbondanzo AL, Fong KM, et al. Frequent loss of KAI1 expression in squamous and lymphoid neoplasms. An immuno-histochemical study of archival tissues. Am J Pathol. 1999;154:1665–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson P, Kingsley EA, Russell PJ. Inverse correlation between KAI1 mRNA levels and invasive behaviour in bladder cancer cell lines. Cancer Lett. 2000;156:9–17.
Article
CAS
PubMed
Google Scholar
Ow K, Delprado W, Fisher R, Barrett J, Yu Y, Jackson P, et al. Relationship between expression of the KAI1 metastasis suppressor and other markers of advanced bladder cancer. J Pathol. 2000;191:39–47.
Article
CAS
PubMed
Google Scholar
Yu Y, Yang JL, Markovic B, Jackson P, Yardley G, Barrett J, et al. Loss of KAI1 messenger RNA expression in both high-grade and invasive human bladder cancers. Clin Cancer Res. 1997;3:1045–9.
CAS
PubMed
Google Scholar
Adachi M, Taki T, Ieki Y, Huang CL, Higashiyama M, Miyake M. Correlation of KAI1/CD82 gene expression with good prognosis in patients with non-small cell lung cancer. Cancer Res. 1996;56:1751–5.
CAS
PubMed
Google Scholar
Friess H, Guo XZ, Tempia-Caliera A, Fukuda A, Martignoni ME, Zimmermann A, et al. Differential expression of metastasis-associated genes in papilla of vater and pancreatic cancer correlates with disease stage. J Clin Oncol. 2001;19:2422–32.
Article
CAS
PubMed
Google Scholar
Guo XZ, Friess H, Di Mola FF, Heinicke JM, Abou-Shady M, Graber H, et al. KAI1, a new metastasis suppressor gene, is reduced in metastatic hepatocellular carcinoma. Hepatology. 1998;28:1481–8.
Article
CAS
PubMed
Google Scholar
Sun HC, Tang ZY, Zhou G, Li XM. KAI1gene expression in hepatocellular carcinoma and its relationship with intrahepatic metastases. J Exp Clin Cancer Res. 1998;17:307–11.
CAS
PubMed
Google Scholar
Chen Z, Mustafa T, Trojanowicz B, Brauckhoff M, Gimm O, Schmutzler C, et al. CD82 and CD63 in thyroid cancer. Int J Mol Med. 2004;14:517–27.
CAS
PubMed
Google Scholar
Zoller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 2009;9:40–55.
Article
PubMed
CAS
Google Scholar
Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J. 1997;11:428–42.
Article
CAS
PubMed
Google Scholar
Stipp CS, Kolesnikova TV, Hemler ME. Functional domains in tetraspanin proteins. Trends Biochem Sci. 2003;28:106–12.
Article
CAS
PubMed
Google Scholar
Hemler M. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;10:801–11.
Article
CAS
Google Scholar
Miranti CK. Controlling cell surface dynamics and signaling: how CD82/KAI1suppresses metastasis. Cell Signal. 2009;21:196–211.
Article
CAS
PubMed
Google Scholar
Lee HA, Park I, Byun HJ, Jeoung D, Kim YM, Lee H. Metastasis suppressor KAI1/CD82 attenuates the matrix adhesion of human prostate cancer cells by suppressing Fibronectin expression and β1 integrin activation. Cell Physiol Biochem. 2011;27:575–86.
Article
CAS
PubMed
Google Scholar
Liu WM, Zhang XA. Kai1/cd82, a tumor metastasis suppressor. Cancer Lett. 2006;240:183–94.
Article
CAS
PubMed
Google Scholar
Miranti C, Van Spriel AB, Bergsma A. Tetraspanins as master organizers of the plasma membrane. In: Cambi A, Lidke DS, editors. Cell membrane nanodomains: from biochemistry to nanoscopy. Boca Raton: CRC Press; 2014. p. 59–80.
Chapter
Google Scholar
Odintsova E, Sugira T, Berditchevski F. Attenuation of EGF rececptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI 1. Curr Biol. 2000;10(16):1009–12.
Article
CAS
PubMed
Google Scholar
Sridhar S, Miranti CK. Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin –dependent crosstalk with c-met receptor and Src kinases. Oncogene. 2006;25:2367–78.
Article
CAS
PubMed
Google Scholar
Zhu J, Liang C, Hua Y, Miao C, Zhang J, Xu A, et al. The metastasis suppressor CD82/KAI1 regulates cell migration and invasion via inhibiting TGF-β 1/Smad signaling in renal cell carcinoma. Oncotarget. 2017;8(31):51559–68.
Article
PubMed
PubMed Central
Google Scholar
Odintsova E, Voortman J, Gilbert E, Berditchevski F. Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci. 2003;116(Pt 22):4557–66.
Article
CAS
PubMed
Google Scholar
Odintsova E, Van Niel G, Conjeaud H, et al. Metastasis suppressor Tetraspanin CD82/KAI1 regulates Ubiquitylation of epidermal growth factor receptor. J Biol Chem. 2013;288(36):26323–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XQ, Yan Q, Sun P, et al. Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, Caveolin-1, and Ganglioside. Cancer Res. 2007;67(20):9986–95.
Article
CAS
PubMed
Google Scholar
Zhang XA, He B, Zhou B, Liu L. Requirement of the p130 CAS-Crk coupling for metastasis suppressor KAI1/CD82- mediated inhibition of cell migration. J Biol Chem. 2003;278(29):27319–28.
Article
CAS
PubMed
Google Scholar
Lee J, Byun HJ, Lee MS, Jin YJ, Jeoung D, Kim YM, et al. The metastasis suppressor CD82/KAI1 inhibits fibronectin adhesion-induced epithelial-to-mesenchymal transition in prostate cancer cells by repressing the associated integrin signaling. Oncotarget. 2017;8(1):1641–54.
Article
PubMed
Google Scholar
Abe M, Sugiura M, Takahashi T, et al. A novel function of CD82/KAI1 on E-cadherin-mediated homophilic cellular adhesion of cancer cells. Cancer Lett. 2008;266(2):163–70.
Article
CAS
PubMed
Google Scholar
Lagaudriere-Gesbert C, Lebel-Binay S, Hubeau C, Fradelizi D, Conjeaud H. Signaling through the tetraspanin CD82 triggers its association with the cytoskeleton leading to sustained morphological changes and T cell activation. Eur J Immunol. 1998;28:4332–44.
Article
CAS
PubMed
Google Scholar
Delaguillaumie A, Lagaudriere-Gesbert C, Popoff MR, Conjeud H. Rho-GTPases link cytoskeletal rearrangments and activation processes induced via the tetraspanin CD82 in T lymphocytes. J Cell Sci. 2002;115(pt 2):433–43.
CAS
PubMed
Google Scholar
Delaguillaumie A, Harriague J, Kohanna S, Bismuth G, Rubinstein E, Seigneuret M, et al. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J Cell Sci. 2004;117:5269–82.
Article
CAS
PubMed
Google Scholar
Miranti CK, Park E. Regulation of E-cadherin and cell-cell adhesion by the metastasis suppressor tetraspanin KAI1/CD82. Clin Exp Metastasis. 2011;28(2):176–7.
Google Scholar
Larochelle J, Gillette M, Desmond R, Ichwan B, Cantilena A, Cerf A, et al. Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain. Blood. 2012;119(8):1848–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hur J, Choi JI, Lee H, Nham P, Kim TW, Chae CW, et al. CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Stem Cells. 2016;18(4):508–21.
CAS
Google Scholar
Bergsma A, Gangulya SS, Dick D, Williams BO, Miranti CK. Global deletion of tetraspanin CD82 attenuates bone growth and enhances bone marrow adipogenesis. Bone. 2018;113:105–13.
Article
CAS
PubMed
Google Scholar
Bergsma A, Gangulya SS, Wiegand ME, Dick D, Williams BO, Miranti CK. Regulation of cytoskeleton and adhesion signaling in osteoclasts by tetraspanin CD82. Bone Reports. 2019;100196:1–11.
Google Scholar
Uchtmann K, Park E, Bergsma A, Segula J, Edick MJ, Miranti CK. Homozygous loss of mouse tetraspanin CD82 enhances integrin αIIbβ3 expression and clot retraction in platelets. Exp Cell Res. 2015;339:261–9.
Article
CAS
PubMed
Google Scholar
Vasmatzis GM, Essand U, Brinkmann B, Lee I, Pastan. Discovery of three genes specifically expressed in human prostate by expressed sequence tag database analysis. PNAS. 1998;95(1):300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang LW, Zhou VE, Velculescu SE, Kern RH, Hruban SR, Hamilton B, et al. Gene expression profiles in normal and cancer cells. Science. 1997;276(5316):1268.
Article
CAS
PubMed
Google Scholar
Liang P, Pardee A. AB differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992;257(5072):967.
Article
CAS
PubMed
Google Scholar
Xu J, Stolk JA, Zhang X, Silva SJ, Houghton RL, Matsumura M, et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res. 2000;60(6):1677–82.
CAS
PubMed
Google Scholar
Rockett JC, Hellmann GM. Confirming microarray data--is it really necessary? Genomics. 2004;83(4):541–9.
Article
CAS
PubMed
Google Scholar
Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002;30(6):503–12.
Article
CAS
PubMed
Google Scholar
Gmyrek GA, Walburg M, Webb CP, Yu HM, You X, Vaughan ED, et al. Normal and malignant prostate epithelial cells differ in their response to hepatocyte growth factor/scatter factor. Am J Pathol. 2001;159(2):579–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bardwell L, Shah K. Analysis of mitogen-activated protein kinase activation and interactions with regulators and substrates. Methods. 2006;40(3):213–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chomczynski P, Mackey K. Short technical report. Modification of the TRIZOL reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques. 1995;19(6):942–5.
CAS
PubMed
Google Scholar
Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol. 2003;4(10):R70.
Article
PubMed
PubMed Central
Google Scholar
Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online. 2006;8(1):175–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castro CY, Stephenson M, Gondo MM, Medeiros LJ, Cagle PT, et al. Prognostic implications of calbindin-D 28k expression in lung cancer: analysis of 452 cases. Mod Pathol. 2000;13(7):8–13.
Article
Google Scholar
Khan I, Baeesa S, Bangash M, Schulten HJ, Alghamadi F, Qashqari H, et al. Pleomorphism and drug resistant cancer stem cells are characteristic of aggressive primary meningioma cell lines. Cancer Cell Int. 2017;17:72–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao LQ, Wang YN, Liang M, Pan MZ. CALB1 enhances the interaction between p53 and MDM2, and inhibits the senescence of ovarian cancer cells. Mol Med Rep. 2019;9(6):5097–104.
Google Scholar
Jackson P, Kingsley EA, Russell PJ. Inverse correlation between KAI1 mRNA levels and invasive behaviour in bladder cancer cell lines. Cancer Lett. 2000;156(1):9–17.
Article
CAS
PubMed
Google Scholar
Yang Z, Yue Z, Ma X, Xu Z. Calcium homeostasis: a potential vicious cycle of bone metastasis in breast cancers. Front Oncol. 2010;10:293–310.
Article
Google Scholar
Wang C, Wang L, So B, Lu N, Song J, Yang X, et al. Serine protease inhibitor Kazal type 1 promotes epithelial-mesenchymal transition through EGFR signaling pathway in prostate cancer. Prostate. 2014;74(7):689–701.
Article
CAS
PubMed
Google Scholar
Ateeq B, Tomlins SA, Laxman B, Asangani IA, Cao Q, Cao X, et al. Therapeutic targeting of SPINK1-positive prostate cancer. Sci Transl Med. 2011;3(72):72–90.
Article
Google Scholar
Zhang X, Yin X, Shen P, Sun G, Yang Y, Liu Y, et al. The association between SPINK1 and clinical outcomes in patients with prostate cancer: a systematic review and meta-analysis. Onco Targets Ther. 2017;10:3123–30.
Article
PubMed
PubMed Central
Google Scholar
Koide H, Kimura T, Inaba H, Sato S, Iwatani K, Yorozu T, et al. Comparison of ERG and SPINK1 expression among incidental and metastatic prostate cancer in Japanese men. Prostate. 2019;79(1):3–8.
Article
CAS
PubMed
Google Scholar
Schwarze S, Luo J, Isaacs WB, Jarrard JF. Modulation of CXCL14 (BRAK) expression in prostate cancer. Prostate. 2005;64(1):67–74.
Article
CAS
PubMed
Google Scholar
Eiro N, Fennadez-Gomez J, Sacristan R, Fernandez-Garcia B, Lobo B, Gonzalez-Suarez J, et al. Stromal factors involved in human prostate cancer development, progression and castration resistance. J Cancer Res Clin Oncol. 2017;143(2):351–9.
Article
PubMed
Google Scholar
Augsten M, Sjoberg E, Frings O, Vorrink S, Frijhoff J, Olsson E, et al. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. Cancer Res. 2014;74(11):2999–3010.
Article
CAS
PubMed
Google Scholar
Song KH, Park MS, Nandu TS, Gadad S, Kim SC, Kim MY, et al. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat Commun. 2016;7:13796–811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vojta A, Samarzija I, Bockor L, Zoldas V. Glyco-genes change expression in cancer through aberrant methylation. Biochim Biophys Acta. 2016;1860(8):1776–85.
Article
CAS
PubMed
Google Scholar
Grieco P, Franco R, Bozzuto G, Toccacieli L, Sgambato A, Marra M, et al. Urotensin II receptor predicts the clinical outcome of prostate cancer patients and is involved in the regulation of motility of prostate adenocarcinoma cells. J Cell Biochem. 2011;112(1):341–53.
Article
CAS
PubMed
Google Scholar
De Cobelli O, Buonerba C, Terracciano D, Boterro D, Lucarelli G, Bove P, et al. Urotensin II receptor on preoperative biopsy is associated with upstaging and upgrading in prostate cancer. Future Oncol. 2015;11(22):3091–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Giulianelli R, Nardoni S, Bruzzese D, Falavolti C, Mirabile G, Bellangino M, et al. Urotensin II receptor expression in prostate cancer patients: a new possible marker. Prostate. 2019;79(3):288–94.
Article
CAS
PubMed
Google Scholar
Zappavigna S, Abate M, Cossu AM, Lusa S, Campani V, Scotti L, et al. Urotensin-II-targeted liposomes as a new drug delivery system towards prostate and colon cancer cells. J Oncol. 2019;2019:1–14.
Article
CAS
Google Scholar
Tong Y, Song Y, Deng S. Combined analysis and validation for DNA methylation and gene expression profiles associated with prostate cancer. Cancer Cell Int. 2019;19:19–50.
Article
Google Scholar
Yu L, Toriseva M, Tuomala M, Seikkula H, Elo T, Tuomela J, et al. Increased expression of fibroblast growth factor 13 in prostate cancer is associated with shortened time to biochemical recurrence after radical prostatectomy. Int J Cancer. 2016;139(1):140–52.
Article
CAS
PubMed
Google Scholar
Hollern DP, Swiatnicki MR, Rennhack JP, Misek SA, Matson BC, McAuliff A, et al. E2F1 drives breast Cancer metastasis by regulating the target gene FGF13 and altering cell migration. Sci Rep. 2019;9(1):10718–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johnstone CN, Pattison AD, Harrison PF, Powell DR, Lock P, Ernst M, et al. FGF13 promotes metastasis of triple-negative breast cancer. Int J Cancer. 2020;147(1):230–43.
Article
CAS
PubMed
Google Scholar
Smith SC, Tomlins SA. Prostate cancer SubtyPINg biomarKers and outcome: is clarity emERGing? Clin Cancer Res. 2014;20(18):4733–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Li H, Mei Y, Huang X, Li Z, Yang Q, et al. Sp1 suppresses miR-3178 to promote theMetastasis invasion Cascade via Upregulation of TRIOBP. Mol Ther Nucleic Acids. 2018;12:1–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma H, Wang LY, Yang RH, Zhou Y, Zhou P, Kong L. Identification of reciprocal microRNA-mRNA pairs associated with metastatic potential disparities in human prostate cancer cells and signaling pathway analysis. J Cell Biochem. 2019;120(10):17779–90.
Article
CAS
PubMed
Google Scholar
Subramaniam MM, Chan JY, Yeoh KG, Quek T, Ito K, Salto-Tellez M. Molecular pathology of RUNX3 in human carcinogenesis. Biochim Biophys Acta. 2009;1796:315–31.
CAS
PubMed
Google Scholar
Chen F, Liu X, Bai J, Pei D, Zheng J. The emerging role of RUNX3 in cancer metastasis. Oncol Rep. 2016;35:1227–36.
Article
CAS
PubMed
Google Scholar
Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002;109:113–24.
Article
CAS
PubMed
Google Scholar
Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL, et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor-activated SMAD. Mol Cell Biol. 2005;25:8097–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K, et al. The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor-induced apoptosis. Mol Cell Biol. 2006;26:4474–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voon DC, Wang H, Koo JK, Nguyen TA, Hor YT, Chu YS, et al. Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition induced cellular plasticity and tumorigenicity. Stem Cells. 2012;30:2088–99.
Article
CAS
PubMed
Google Scholar
Tanaka S, Shiraha H, Nakanishi Y, Nishina S, Matsubara M, Horiguchi S, et al. Runt-related transcription factor 3 reverses epithelial mesenchymal transition in hepatocellular carcinoma. Int J Cancer. 2012;131:2537–46.
Article
CAS
PubMed
Google Scholar
Sakakura C, Hasegawa K, Miyagawa K, Nakashima S, Yoshikawa T, Kin S, et al. Possible involvement of RUNX3 silencing in the peritoneal metastases of gastric cancers. Clin Cancer Res. 2005;11:6479–88.
Article
CAS
PubMed
Google Scholar
Peng Z, Wei D, Wang L, Tang H, Zhang J, Le X, et al. RUNX3 inhibits the expression of vascular endothelial growth factor and reduces the angiogenesis, growth, and metastasis of human gastric cancer. Clin Cancer Res. 2006;12:6386–94.
Article
CAS
PubMed
Google Scholar
Chen F, Wang M, Bai J, Liu Q, Xi Y, Li W, et al. Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PLoS One. 2012;9:e86917.
Article
CAS
Google Scholar
Xiao P, Ling H, Lan G, Liu J, Hua H, Yang R. Trefoil factors. Gastrointestinal-specific proteins associated with gastric cancer. Clin Chim Acta. 2015;450:127–34.
Article
CAS
PubMed
Google Scholar
Xiao L, Liu YP, Xiao CX, Ren JL, Guleng B. Serum TFF3 may be a pharmacodynamic marker of responses to chemotherapy in gastrointestinal cancers. BMC Clin Pathol. 2012;14:1472.
Google Scholar
Madsen IJ, Nielsen O, Tornoe T, Thim L, Holmskov U. Tissue localization of human trefoil factors 1, 2, and 3. J Histochem Cytochem. 2007;55:505–13.
Article
CAS
PubMed
Google Scholar
Perera O, Evans A, Pertziger M, MacDonald C, Chen H, Liu DX, et al. Trefoil factor 3 (TFF3) enhances the oncogenic characteristics of prostate carcinoma cells and reduces sensitivity to ionising radiation. Cancer Lett. 2015;361:104–11.
Article
CAS
PubMed
Google Scholar