Canadian Cancer Society’s Steering Committee on Cancer Statistics. Canadian Cancer Statistics 2012. Toronto, ON: Canadian Cancer Society; 2012.
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.
Article
PubMed
Google Scholar
Huggins C, Hodges CV. Studies on prostate cancer, I: the effect of castration and estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941;1(4):293–7.
CAS
Google Scholar
Meng MV, Grossfeld GD, Sadetsky N, Mehta SS, Lubeck DP, Carroll PR. Contemporary patterns of androgen deprivation therapy use for newly diagnosed prostate cancer. Urology. 2002;60(3 Suppl 1):7–11 discussion 11-2.
Article
CAS
PubMed
Google Scholar
Cooperberg MR, Grossfeld GD, Lubeck DP, Carroll PR. National practice patterns and time trends in androgen ablation for localized prostate cancer. J Natl Cancer Inst. 2003;95(13):981–9.
Article
PubMed
Google Scholar
Shahinian VB, Kuo YF, Freeman JL, Orihuela E, Goodwin JS. Increasing use of gonadotropin-releasing hormone agonists for the treatment of localized prostate carcinoma. Cancer. 2005;103(8):1615–24.
Article
CAS
PubMed
Google Scholar
Bolla M, Collette L, Blank L, et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet. 2002;360(9327):103–6.
Article
CAS
PubMed
Google Scholar
Isbarn H, Boccon-Gibod L, Carroll PR, et al. Androgen deprivation therapy for the treatment of prostate Cancer: consider both benefits and risks. Eur Urol. 2009;55(1):62–75.
Article
CAS
PubMed
Google Scholar
Loblaw DA, Virgo KS, Nam R, et al. Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol. 2007;25(12):1596–605.
Article
CAS
PubMed
Google Scholar
Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. JAMA. 2005;294(2):238–44.
Article
CAS
PubMed
Google Scholar
Alibhai SM, Gogov S, Allibhai Z. Long-term side effects of androgen deprivation therapy in men with non-metastatic prostate cancer: a systematic literature review. Crit Rev Oncol Hematol. 2006;60(3):201–15.
Article
PubMed
Google Scholar
Alibhai SMH, Breunis H, Timilshina N, et al. Impact of androgen-deprivation therapy on physical function and quality of life in men with non-metastatic prostate cancer. J Clin Oncol. 2010;28(34):5038–45.
Article
CAS
PubMed
Google Scholar
Alibhai SM, Duong-Hua M, Sutradhar R, et al. Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J Clin Oncol. 2009;27(21):3452–8.
Article
PubMed
Google Scholar
Fossa SD, Woehre H, Kurth K-H, et al. Influence of urological morbidity on quality of life in patients with prostate cancer. Eur Urol. 1997;31(Suppl 3):3–8.
Article
PubMed
Google Scholar
Smith DS, Carvalhal GF, Schneider K, Krygiel J, Yan Y, Catalona WJ. Quality-of-life outcomes for men with prostate carcinoma detected by screening. Cancer. 2000;88(6):1454–63.
Article
CAS
PubMed
Google Scholar
Potosky AL, Reeve BB, Clegg LX, et al. Quality of life following localized prostate cancer treated initially with androgen deprivation therapy or no therapy. J Natl Cancer Inst. 2002;94(6):430–7.
Article
PubMed
Google Scholar
Wei JT, Dunn RL, Sandler HM, et al. Comprehensive comparison of health-related quality of life after contemporary therapies for localized prostate cancer. J Clin Oncol. 2002;20(2):557–66.
Article
PubMed
Google Scholar
Fowler FJ Jr, McNaughton Collins M, Walker Corkery E, Elliott DB, Barry MJ. The impact of androgen deprivation on quality of life after radical prostatectomy for prostate carcinoma. Cancer. 2002;95(2):287–95.
Article
PubMed
Google Scholar
Lubeck DP, Litwin MS, Henning JM, Stoddard ML, Flanders SC, Carroll PR. Changes in health-related quality of life in the first year after treatment for prostate cancer: results from CaPSURE. Urology. 1999;53(1):180–6.
Article
CAS
PubMed
Google Scholar
Herr HW, O'Sullivan M. Quality of life of asymptomatic men with nonmetastatic prostate cancer on androgen deprivation therapy. J Urol. 2000;163(6):1743–6.
Article
CAS
PubMed
Google Scholar
Lubeck DP, Grossfeld GD, Carroll PR. The effect of androgen deprivation therapy on health-related quality of life in men with prostate cancer. Urology. 2001;58(2 Suppl 1):94–100.
Article
CAS
PubMed
Google Scholar
Green HJ, Pakenham KI, Headley BC, Gardiner RA. Coping and health-related quality of life in men with prostate cancer randomly assigned to hormonal medication or close monitoring. Psychooncology. 2002;11(5):401–14.
Article
PubMed
Google Scholar
van Andel G, Kurth KH. The impact of androgen deprivation therapy on health related quality of life in asymptomatic men with lymph node positive prostate cancer. Eur Urol. 2003;44(2):209–14.
Article
CAS
PubMed
Google Scholar
Stone P, Hardy J, Huddart R, A'Hern R, Richards M. Fatigue in patients with prostate cancer receiving hormone therapy. Eur J Cancer. 2000;36(9):1134–41.
Article
CAS
PubMed
Google Scholar
Alibhai SM, Breunis H, Timilshina N, et al. Long-term impact of androgen-deprivation therapy on physical function and quality of life. Cancer. 2015;121(14):2350–57.
Article
CAS
PubMed
Google Scholar
Gray RE, Wassersug RJ, Sinding C, Barbara AM, Trosztmer C, Fleshner N. The experiences of men receiving androgen deprivation treatment for prostate cancer: a qualitative study. Can J Urol. 2005;12(4):2755–63.
PubMed
Google Scholar
Zeliadt SB, Ramsey SD, Penson DF, et al. Why do men choose one treatment over another?: a review of patient decision making for localized prostate cancer. Cancer. 2006;106(9):1865–74.
Article
PubMed
Google Scholar
Taylor LG, Canfield SE, Du XL. Review of major adverse effects of androgen-deprivation therapy in men with prostate cancer. Cancer. 2009;115(11):2388–99.
Article
PubMed
Google Scholar
Basaria S, Lieb J 2nd, Tang AM, et al. Long-term effects of androgen deprivation therapy in prostate cancer patients. Clin Endocrinol (Oxford). 2002;56(6):779–86.
Article
CAS
Google Scholar
Segal RJ, Reid RD, Courneya KS, et al. Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J Clin Oncol. 2003;21(9):1653–9.
Article
PubMed
Google Scholar
Potosky AL, Knopf K, Clegg LX, et al. Quality-of-life outcomes after primary androgen deprivation therapy: results from the prostate Cancer outcomes study. J Clin Oncol. 2001;19(17):3750–7.
Article
CAS
PubMed
Google Scholar
Galvão DA, Spry NA, Taaffe DR, et al. Changes in muscle, fat and bone mass after 36 weeks of maximal androgen blockade for prostate cancer. BJU Int. 2008;(1);44–47.
Article
PubMed
Google Scholar
Galvao DA, Taaffe DR, Spry N, Joseph D, Turner D, Newton RU. Reduced muscle strength and functional performance in men with prostate cancer undergoing androgen suppression: a comprehensive cross-sectional investigation. Prostate Cancer Prostatic Dis. 2009;12(2):198–203.
Article
CAS
PubMed
Google Scholar
Smith MR. Changes in fat and lean body mass during androgen-deprivation therapy for prostate cancer. Urology. 2004;63(4):742–5.
Article
PubMed
Google Scholar
Smith MR, Finkelstein JS, McGovern FJ, et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J Clin Endo Metab. 2002;87(2):599–603.
Article
CAS
Google Scholar
Smith MR, Saad F, Egerdie B, et al. Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol. 2012;30(26):3271–6.
Article
PubMed
PubMed Central
Google Scholar
Bylow K, Dale W, Mustian K, et al. Falls and physical performance deficits in older patients with prostate cancer undergoing androgen deprivation therapy. Urology. 2008;72(2):422–7.
Article
PubMed
Google Scholar
Hussain S, Breunis H, Timilshina N, Alibhai SMH. Falls in men on androgen deprivation therapy for prostate cancer. J Geriatr Oncol. 2010;1(1):32–9.
Article
Google Scholar
Body JJ, Bergmann P, Boonen S, et al. Management of cancer treatment-induced bone loss in early breast and prostate cancer -- a consensus paper of the Belgian bone Club. Osteoporos Int. 2007;18(11):1439–50.
Article
CAS
PubMed
Google Scholar
Diamond TH, Higano CS, Smith MR, Guise TA, Singer FR. Osteoporosis in men with prostate carcinoma receiving androgen-deprivation therapy: recommendations for diagnosis and therapies. Cancer. 2004;100(5):892–9.
Article
PubMed
Google Scholar
Greenspan SL, Coates P, Sereika SM, Nelson JB, Trump DL, Resnick NM. Bone loss after initiation of androgen deprivation therapy in patients with prostate cancer. J Clin Endo Metab. 2005;90(12):6410–7.
Article
CAS
Google Scholar
Kiratli BJ, Srinivas S, Perkash I, Terris MK. Progressive decrease in bone density over 10 years of androgen deprivation therapy in patients with prostate cancer. Urology. 2001;57(1):127–32.
Article
CAS
PubMed
Google Scholar
Krupski TL, Smith MR, Chan Lee W, et al. Natural history of bone complications in men with prostate carcinoma initiating androgen deprivation therapy. Cancer. 2004;101(3):541–9.
Article
PubMed
Google Scholar
Morote J, Orsola A, Abascal JM, et al. Bone mineral density changes in patients with prostate cancer during the first 2 years of androgen suppression. J Urol. 2006;175(5):1679–83 discussion 83.
Article
CAS
PubMed
Google Scholar
Saad F, Adachi JD, Brown JP, et al. Cancer treatment-induced bone loss in breast and prostate cancer. J Clin Oncol. 2008;26(33):5465–76.
Article
PubMed
Google Scholar
Wadhwa VK, Weston R, Mistry R, Parr NJ. Long-term changes in bone mineral density and predicted fracture risk in patients receiving androgen-deprivation therapy for prostate cancer, with stratification of treatment based on presenting values. BJU Int. 2009;104(6):800–5.
Article
CAS
PubMed
Google Scholar
Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352(2):154–64.
Article
CAS
PubMed
Google Scholar
Alibhai SM, Duong-Hua M, Cheung AM, et al. Fracture types and risk factors in men with prostate Cancer on androgen deprivation therapy: a matched cohort study of 19,079 men. J Urol. 2010;184(3):918–24.
Article
PubMed
Google Scholar
Lopez AM, Pena MA, Hernandez R, Val F, Martin B, Riancho JA. Fracture risk in patients with prostate cancer on androgen deprivation therapy. Osteoporos Int. 2005;16(6):707–11.
Article
CAS
PubMed
Google Scholar
Malcolm JB, Derweesh IH, Kincade MC, et al. Osteoporosis and fractures after androgen deprivation initiation for prostate cancer. Can J Urol. 2007;14(3):3551–9.
PubMed
Google Scholar
Smith MR, Malkowicz SB, Chu F, et al. Toremifene improves lipid profiles in men receiving androgen-deprivation therapy for prostate cancer: interim analysis of a multicenter phase III study. J Clin Oncol. 2008;26(11):1824–9.
Article
CAS
PubMed
Google Scholar
Mohamedali HZ, Breunis H, Timilshina N, Alibhai SM. Changes in blood glucose and cholesterol levels due to androgen deprivation therapy in men with non-metastatic prostate cancer. Can Urol Assoc J. 2011;5(1):28–32.
Article
PubMed
PubMed Central
Google Scholar
Smith MR, Lee H, Fallon MA, Nathan DM. Adipocytokines, obesity, and insulin resistance during combined androgen blockade for prostate cancer. Urology. 2008;71(2):318–22.
Article
PubMed
Google Scholar
Smith MR, Lee H, McGovern F, et al. Metabolic changes during gonadotropin-releasing hormone agonist therapy for prostate cancer: differences from the classic metabolic syndrome. Cancer. 2008;112(10):2188–94.
Article
CAS
PubMed
Google Scholar
Smith MR, Lee H, Nathan DM. Insulin sensitivity during combined androgen blockade for prostate cancer. J Clin Endo Metab. 2006;91(4):1305–8.
Article
CAS
Google Scholar
Keating NL, O'Malley AJ, Freedland SJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst. 2010;102(1):39–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keating NL, O'Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol. 2006;24(27):4448–56.
Article
CAS
PubMed
Google Scholar
Lage MJ, Barber BL, Markus RA. Association between androgen-deprivation therapy and incidence of diabetes among males with prostate cancer. Urology. 2007;70(6):1104–8.
Article
CAS
PubMed
Google Scholar
D'Amico AV, Denham JW, Crook J, et al. Influence of androgen suppression therapy for prostate cancer on the frequency and timing of fatal myocardial infarctions. J Clin Oncol. 2007;25(17):2420–5.
Article
CAS
PubMed
Google Scholar
Tsai HK, D'Amico AV, Sadetsky N, Chen MH, Carroll PR. Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality. J Natl Cancer Inst. 2007;99(20):1516–24.
Article
PubMed
Google Scholar
Efstathiou JA, Bae K, Shipley WU, et al. Cardiovascular mortality and duration of androgen deprivation for locally advanced prostate cancer: analysis of RTOG 92-02. Eur Urol. 2008;54(4):816–23.
Article
CAS
PubMed
Google Scholar
Efstathiou JA, Bae K, Shipley WU, et al. Cardiovascular mortality after androgen deprivation therapy for locally advanced prostate cancer: RTOG 85-31. J Clin Oncol. 2009;27(1):92–9.
Article
PubMed
Google Scholar
Saigal CS, Gore JL, Krupski TL, Hanley J, Schonlau M, Litwin MS. Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer. 2007;110(7):1493–500.
Article
CAS
PubMed
Google Scholar
Alibhai SM. Cardiovascular toxicity of androgen deprivation therapy: a new door opens. J Clin Oncol. 2011;29(26):3500–2.
Article
PubMed
Google Scholar
Alibhai SM, Mohamedali HZ. Cardiac and cognitive effects of androgen deprivation therapy: are they real? Curr Oncol. 2010;17(Suppl 2):S55–64.
PubMed
PubMed Central
Google Scholar
Windsor PM, Nicol KF, Potter J. A randomized, controlled trial of aerobic exercise for treatment-related fatigue in men receiving radical external beam radiotherapy for localized prostate carcinoma. Cancer. 2004;101(3):550–7.
Article
PubMed
Google Scholar
Carmack Taylor CL, Demoor C, Smith MA, et al. Active for life after Cancer: a randomized trial examining a lifestyle physical activity program for prostate cancer patients. Psychooncology. 2006;15(10):847–62.
Article
PubMed
Google Scholar
Galvao DA, Nosaka K, Taaffe DR, et al. Resistance training and reduction of treatment side effects in prostate cancer patients. Med Sci Sports Exerc. 2006;38(12):2045–52.
Article
PubMed
Google Scholar
Culos-Reed SN, Robinson JL, Lau H, O'Connor K, Keats MR. Benefits of a physical activity intervention for men with prostate cancer. J Sport Exerc Psychol. 2007;29(1):118–27.
Article
PubMed
Google Scholar
Segal RJ, Reid RD, Courneya KS, et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol. 2009;27(3):344–51.
Article
PubMed
Google Scholar
Hansen PA, Dechet CB, Porucznik CA, LaStayo PC. Comparing eccentric resistance exercise in prostate cancer survivors on and off hormone therapy: a pilot study. Phys Med Rehabil. 2009;1(11):1019–24.
Google Scholar
Culos-Reed SN, Robinson JW, Lau H, et al. Physical activity for men receiving androgen deprivation therapy for prostate Cancer: benefits from a 16-week intervention. Support Care Cancer. 2010;18(5):591–9.
Article
PubMed
Google Scholar
Galvao DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28(2):340–7.
Article
CAS
PubMed
Google Scholar
Bourke L, Doll H, Crank H, Daley A, Rosario D, Saxton JM. Lifestyle intervention in men with advanced prostate cancer receiving androgen suppression therapy: a feasibility study. Cancer Epidemiol Biomark Prev. 2011;20(4):647–57.
Article
Google Scholar
Truong PT, Gaul CA, McDonald RE, et al. Prospective evaluation of a 12-week walking exercise program and its effect on fatigue in prostate Cancer patients undergoing radical external beam radiotherapy. Am J Clin Oncol. 2011;34(4):350–5.
Article
PubMed
Google Scholar
Santa Mina D, Alibhai SMH, Matthew AG, et al. A randomized trial of aerobic versus resistance exercise in prostate cancer survivors. J Aging Phys Act. 2013;21(4):455–78.
Article
PubMed
Google Scholar
Santa Mina D, Ritvo P, Matthew AG, et al. Group exercise versus personal training for prostate Cancer patients: a pilot randomized trial. J Cancer Ther. 2012;3(2):146–56.
Article
Google Scholar
Murphy R, Wassersug R, Dechman G. The role of exercise in managing the adverse effects of androgen deprivation therapy in men with prostate cancer. Phys Ther Rev. 2011;16(4):269–77.
Article
Google Scholar
Baumann FT, Zopf EM, Bloch W. Clinical exercise interventions in prostate cancer patients--a systematic review of randomized controlled trials. Support Care Cancer. 2012;20(2):221–33.
Article
PubMed
Google Scholar
Santa Mina D, Ritvo P, Segal R, Culos-Reed SN, Alibhai SMH. Exercise After Prostate Cancer Diagnosis. In: Saxton JM, Daley A, eds. Exercise and Cancer Survivorship: Impact on Health Outcomes and Quality of Life New York: Springer, 2010:113–140.
Google Scholar
Gardner JR, Livingston PM, Fraser SF. Effects of exercise on treatment-related adverse effects for patients with prostate cancer receiving androgen-deprivation therapy: a systematic review. J Clin Oncol. 2014;32(4):335–46.
Article
PubMed
Google Scholar
Bourke L, Smith D, Steed L, et al. Exercise for men with prostate Cancer: a systematic review and meta-analysis. Eur Urol. 2016;69(4):693–703.
Article
PubMed
Google Scholar
Santa Mina D, Connor MK, Alibhai SM, et al. Exercise effects on adipokines and the IGF axis in men with prostate cancer treated with androgen deprivation: a randomized study. Can Urol Assoc J. 2013;7(11–12):E692–8.
Article
PubMed
Google Scholar
Albertsen PC, Moore DF, Shih W, Lin Y, Li H, Lu-Yao GL. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29(10):1335–41.
Article
PubMed
PubMed Central
Google Scholar
Brassell SA, Rice KR, Parker PM, et al. Prostate cancer in men 70 years old or older, indolent or aggressive: clinicopathological analysis and outcomes. J Urol. 2011;185(1):132–7.
Article
PubMed
Google Scholar
Cooperberg MR, Broering JM, Carroll PR. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J Natl Cancer Inst. 2009;101(12):878–87.
Article
PubMed
PubMed Central
Google Scholar
Crawford ED, Grubb R 3rd, Black A, et al. Comorbidity and mortality results from a randomized prostate cancer screening trial. J Clin Oncol. 2011;29(4):355–61.
Article
PubMed
Google Scholar
D'Amico AV, Chen MH, Renshaw AA, Loffredo M, Kantoff PW. Causes of death in men undergoing androgen suppression therapy for newly diagnosed localized or recurrent prostate cancer. Cancer. 2008;113(12):3290–7.
Article
PubMed
Google Scholar
D'Amico AV, Cote K, Loffredo M, Renshaw AA, Schultz D. Determinants of prostate cancer-specific survival after radiation therapy for patients with clinically localized prostate cancer. J Clin Oncol. 2002;20(23):4567–73.
Article
PubMed
Google Scholar
Daskivich T, Sadetsky N, Kaplan SH, Greenfield S, Litwin MS. Severity of comorbidity and non-prostate cancer mortality in men with early-stage prostate cancer. Arch Intern Med. 2010;170(15):1396–7.
Article
PubMed
Google Scholar
Dosoretz AM, Chen MH, Salenius SA, et al. Mortality in men with localized prostate cancer treated with brachytherapy with or without neoadjuvant hormone therapy. Cancer. 2010;116(4):837–42.
Article
PubMed
Google Scholar
Ades PA. Cardiac rehabilitation and secondary prevention of coronary heart disease. N Engl J Med. 2001;345(12):892–902.
Article
CAS
PubMed
Google Scholar
Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.
Article
CAS
PubMed
Google Scholar
Gillies CL, Abrams KR, Lambert PC, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ. 2007;334(7588):299.
Article
PubMed
PubMed Central
Google Scholar
Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116(10):682–92.
Article
PubMed
Google Scholar
Papaioannou A, Morin S, Cheung AM, et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ. 2010;182(17):1864–73.
Article
PubMed
PubMed Central
Google Scholar
Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.
Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47.
Article
PubMed
PubMed Central
Google Scholar
Kenfield SA, Stampfer MJ, Giovannucci E, Chan JM. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol. 2011;29(6):726–32.
Article
PubMed
PubMed Central
Google Scholar
Keogh JW, MacLeod RD. Body composition, physical fitness, functional performance, quality of life, and fatigue benefits of exercise for prostate cancer patients: a systematic review. J Pain Symptom Manag. 2012;43(1):96–110.
Article
Google Scholar
Alibhai SM, Santa Mina D, Ritvo P, et al. A phase II RCT and economic analysis of three exercise delivery methods in men with prostate cancer on androgen deprivation therapy. BMC Cancer. 2015;15(1):312.
Article
PubMed
PubMed Central
Google Scholar
Antonelli J, Freedland SJ, Jones LW. Exercise therapy across the prostate cancer continuum. Prostate Cancer Prostatic Dis. 2009;12(2):110–5.
Article
CAS
PubMed
Google Scholar
Demark-Wahnefried W, Clipp EC, Lipkus IM, et al. Main outcomes of the FRESH START trial: a sequentially tailored, diet and exercise mailed print intervention among breast and prostate cancer survivors. J Clin Oncol. 2007;25(19):2709–18.
Article
PubMed
Google Scholar
Meyerhardt JA, Ma J, Courneya KS. Energetics in colorectal and prostate cancer. J Clin Oncol. 2010;28(26):4066–73.
Article
PubMed
PubMed Central
Google Scholar
Richman EL, Kenfield SA, Stampfer MJ, Paciorek A, Carroll PR, Chan JM. Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research endeavor. Cancer Res. 2011;71(11):3889–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vallance JK, Courneya KS, Plotnikoff RC, Dinu I, Mackey JR. Maintenance of physical activity in breast cancer survivors after a randomized trial. Med Sci Sports Exerc. 2008;40(1):173–80.
Article
PubMed
Google Scholar
Courneya KS, Segal RJ, Gelmon K, et al. Six-month follow-up of patient-rated outcomes in a randomized controlled trial of exercise training during breast cancer chemotherapy. Cancer Epidemiol Biomark Prev. 2007;16(12):2572–8.
Article
Google Scholar
Dishman RK. Exercise adherence: its impact on public health. Champaign: Human Kinetics; 1988.
Google Scholar
Courneya KS, Segal RJ, Reid RD, et al. Three independent factors predicted adherence in a randomized controlled trial of resistance exercise training among prostate cancer survivors. J Clin Epidemiol. 2004;57(6):571–9.
Article
PubMed
Google Scholar
Oldridge NB, Guyatt GH, Fischer ME, Rimm AA. Cardiac rehabilitation after myocardial infarction. Combined experience of randomized clinical trials. JAMA. 1988;260(7):945–50.
Article
CAS
PubMed
Google Scholar
Fong DY, Ho JW, Hui BP, et al. Physical activity for cancer survivors: meta-analysis of randomised controlled trials. BMJ. 2012;344:e70.
Article
PubMed
PubMed Central
Google Scholar
Dalal HM, Zawada A, Jolly K, Moxham T, Taylor RS. Home based versus Centre based cardiac rehabilitation: Cochrane systematic review and meta-analysis. BMJ. 2010;340:b5631.
Article
PubMed
PubMed Central
Google Scholar
Alibhai SMH, Santa Mina D, Ritvo P, et al. A phase II RCT of three exercise delivery methods in older men with prostate cancer on adtrogen deprivation therapy (abstract). J Geriatr Oncol. 2016;7(Suppl. 1):58–9.
Google Scholar
Friedenreich CM, Courneya KS, Bryant HE. The lifetime total physical activity questionnaire: development and reliability. Med Sci Sports Exerc. 1998;30(2):266–74.
Article
CAS
PubMed
Google Scholar
Galvao DA, Taaffe DR, Spry N, Joseph D, Newton RU. Acute versus chronic exposure to androgen suppression for prostate cancer: impact on the exercise response. J Urol. 2011;186(4):1291–7.
Article
CAS
PubMed
Google Scholar
Santa Mina D, Alibhai SM, Matthew AG, et al. Exercise in clinical cancer care: a call to action and program development description. Curr Oncol. 2012;19(3):e136–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segal R, Zwaal C, Green E, et al. Exercise for people with cancer: a clinical practice guideline. Curr Oncol. 2017;24(1):40–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.
Article
CAS
PubMed
Google Scholar
Heyward VH. Advanced fitness assessment and exercise prescription, ed. 5th. Windsor: Human Kinetics Publishers; 2010.
Google Scholar
Spring B, Duncan JM, Janke EA, et al. Integrating technology into standard weight loss treatment: a randomized controlled trial. JAMA Intern Med. 2013;173(2):105–11.
Article
PubMed
PubMed Central
Google Scholar
Spring B, Schneider K, McFadden HG, et al. Multiple behavior changes in diet and activity: a randomized controlled trial using mobile technology. Arch Intern Med. 2012;172(10):789–96.
Article
PubMed
PubMed Central
Google Scholar
Free C, Phillips G, Galli L, et al. The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med. 2013;10(1):e1001362.
Article
PubMed
PubMed Central
Google Scholar
Spring B. Health decision making: lynchpin of evidence-based practice. Med Decis Mak. 2008;28(6):866–74.
Article
Google Scholar
Duncan JM, Janke EA, Kozak AT, et al. PDA+: a personal digital assistant for obesity treatment - an RCT testing the use of technology to enhance weight loss treatment for veterans. BMC Public Health. 2011;11:223.
Article
PubMed
PubMed Central
Google Scholar
Spring B, Schneider K, McFadden HG, et al. Make better choices (MBC): study design of a randomized controlled trial testing optimal technology-supported change in multiple diet and physical activity risk behaviors. BMC Public Health. 2010;10:586.
Article
PubMed
PubMed Central
Google Scholar
Wayne N, Perez DF, Kaplan DM, Ritvo P. Health coaching reduces HbA1c in type 2 diabetic patients from a lower-socioeconomic status community: a randomized controlled trial. J Med Internet Res. 2015;17(10):e224.
Article
PubMed
PubMed Central
Google Scholar
Wayne N, Ritvo P. Smartphone-enabled health coach intervention for people with diabetes from a modest socioeconomic strata community: single-arm longitudinal feasibility study. J Med Internet Res. 2014;16(6):e149.
Article
PubMed
PubMed Central
Google Scholar
Pludwinski S, Ahmad F, Wayne N, Ritvo P. Participant experiences in a smartphone-based health coaching intervention for type 2 diabetes: a qualitative inquiry. J Telemed Telecare. 2016;22(3):172–8.
Article
PubMed
Google Scholar
Ritvo P, Obadia M, Santa Mina D, et al. An Innovative smartphone-enabled health coaching intervention (iMOVE) to promote long-term maintenance of physical activity in breast cancer survivors: A protocol for a feasibility pilot randomized controlled trial. J Med Internet Res; in press.
Takacs J, Pollock CL, Guenther JR, Bahar M, Napier C, Hunt MA. Validation of the Fitbit one activity monitor device during treadmill walking. J Sci Med Sport. 2014;17(5):496–500.
Article
PubMed
Google Scholar
Noah JA, Spierer DK, Gu J, Bronner S. Comparison of steps and energy expenditure assessmetn in adults of Fitbit tracker and ultra to the Actical and indirect calorimetry. J Med Eng Technol. 2013;37(7):456–62.
Article
Google Scholar
Cella D. The functional assessment of Cancer therapy-Anemia (FACT-an) scale: a new tool for the assessment of outcomes in cancer anemia and fatigue. Semin Hematol. 1997;34(3 Suppl 2):13–9.
CAS
PubMed
Google Scholar
Cella D, Lai JS, Chang CH, Peterman A, Slavin M. Fatigue in cancer patients compared with fatigue in the general United States population. Cancer. 2002;94(2):528–38.
Article
PubMed
Google Scholar
Iop A, Manfredi AM, Bonura S. Fatigue in cancer patients receiving chemotherapy: an analysis of published studies. Ann Oncol. 2004;15(5):712–20.
Article
CAS
PubMed
Google Scholar
Minton O, Richardson A, Sharpe M, Hotopf M, Stone P. A systematic review and meta-analysis of the pharmacological treatment of cancer-related fatigue. J Natl Cancer Inst. 2008;100(16):1155–66.
Article
CAS
PubMed
Google Scholar
Rao AV, Cohen HJ. Fatigue in older cancer patients: etiology, assessment, and treatment. Semin Oncol. 2008;35(6):633–42.
Article
PubMed
Google Scholar
Enright PL, McBurnie MA, Bittner V, et al. The 6-min walk test: a quick measure of functional status in elderly adults. Chest. 2003;123(2):387–98.
Article
PubMed
Google Scholar
Solway S, Brooks D, Lacasse Y, Thomas S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest. 2001;119(1):256–70.
Article
CAS
PubMed
Google Scholar
Cella DF, Tulsky DS, Gray G, et al. The functional assessment of Cancer therapy scale: development and validation of the general measure. J Clin Oncol. 1993;11(3):570–9.
Article
CAS
PubMed
Google Scholar
Cella D, Hahn EA, Dineen K. Meaningful change in cancer-specific quality of life scores: differences between improvement and worsening. Qual Life Res. 2002;11(3):207–21.
Article
PubMed
Google Scholar
Why FACIT. Benefits of the FACIT measurement system. http://www.facit.org/FACITOrg/Overview/WhyFACIT/Benefits. Accessed 12 July 2017.
Esper P, Mo F, Chodak G, Sinner M, Cella D, Pienta KJ. Measuring quality of life in men with prostate cancer using the functional assessment of cancer therapy-prostate instrument. Urology. 1997;50(6):920–8.
Article
CAS
PubMed
Google Scholar
Canadian Society of Exercise Physiology. Certified fitness appraisers resource manual. Ottawa: Canadian Society of Exercise Physiology; 1992.
Google Scholar
Bohannon RW. Sit-to-stand test for measuring performance of lower extremity muscles. Percept Mot Skills. 1995;80(1):163–6.
Article
CAS
PubMed
Google Scholar
Schaubert KL, Bohannon RW. Reliability and validity of three strength measures obtained from community-dwelling elderly persons. J Strength Cond Res. 2005;19(3):717–20.
PubMed
Google Scholar
Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil. 1985;66(2):69–74.
CAS
PubMed
Google Scholar
Cooper R, Kuh D, Hardy R. Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ. 2010;341:c4467.
Article
PubMed
PubMed Central
Google Scholar
Canadian Society of Exercise Physiology. Physical Activity Training for Health (CSEP-PATH). Ottawa: Health Canada; 2013.
Google Scholar
Penninx BW, Guralnik JM, Onder G, Ferrucci L, Wallace RB, Pahor M. Anemia and decline in physical performance among older persons. Am J Med. 2003;115(2):104–10.
Article
PubMed
Google Scholar
Timilshina N, Hussain S, Breunis H, Alibhai SM. Predictors of hemoglobin decline in non-metastatic prostate cancer patients on androgen deprivation therapy: a matched cohort study. Support Care Cancer. 2011;19(11):1815–21.
Article
PubMed
Google Scholar
Saylor PJ, Smith MR. Metabolic complications of androgen deprivation therapy for prostate cancer. J Urol. 2009;181(5):1998–2006 discussion 07-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.
Article
PubMed
Google Scholar
Roset M, Badia X, Mayo NE. Sample size calculations in studies using the EuroQol 5D. Qual Life Res. 1999;8(6):539–49.
Article
CAS
PubMed
Google Scholar
Shaw JW, Johnson JA, Coons SJ. US valuation of the EQ-5D health states: development and testing of the D1 valuation model. Med Care. 2005;43(3):203–20.
Article
PubMed
Google Scholar
Kattan MW, Cowen ME. Encyclopedia of medical decision making, vol. 1280. Thousand Oaks: Sage Publications; 2009.
Book
Google Scholar
Canadian Society of Exercise Physiology. Canadian Physical Activity Guidelines. Ottawa: Health Canada; 2011.
Google Scholar
Godin G, Jobin J, Bouillon J. Assessment of leisure time exercise behavior by self-report: a concurrent validity study. Can J Public Health. 1986;77(5):359–62.
CAS
PubMed
Google Scholar
Godin G, Shephard RJ. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci. 1985;10(3):141–6.
CAS
PubMed
Google Scholar
McClain JJ, Sisson SB, Tudor-Locke C. Actigraph accelerometer interinstrument reliability during free-living in adults. Med Sci Sports Exerc. 2007;39(9):1509–14.
Article
PubMed
Google Scholar
Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56.
Article
PubMed
PubMed Central
Google Scholar
Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–81.
Article
CAS
PubMed
Google Scholar
Creatore MI, Glazier RH, Moineddin R, et al. Association of Neighborhood Walkability With Change in Overweight, Obesity, and Diabetes. JAMA. 2016;315(20):2211–20.
Article
CAS
PubMed
Google Scholar
Williams GC, Grow VM, Freedman ZR, Ryan RM, Deci EL. Motivational predictors of weight loss and weight-loss maintenance. J Pers Soc Psychol. 1996;70(1):115–26.
Article
CAS
PubMed
Google Scholar
Moustaka FC, Vlachopoulos SP, Kabitsis C, Theodorakis Y. Effects of an autonomy-supportive exercise instructing style on exercise motivation, psychological well-being, and exercise attendance in middle-age women. J Phys Act Health. 2012;9(1):138–50.
Article
PubMed
Google Scholar
Chen B, Vansteenkiste M, Beyers W, et al. Basic psychological need satisfaction, need frustration, and need strength across four cultures. Motiv Emot. 2015;39:216–36.
Article
Google Scholar
Markland DA, Tobin V. A modification to the Behavioural regulation in exercise questionnaire to include an assessment of amotivation. J Sport Exerc Psychol. 2004;26:191–6.
Article
Google Scholar
Brunet J, Sabiston CM. Exploring motivation for physical activity across the adult lifespan. Psychol Sport Exerc. 2011;12(2):99–105.
Article
Google Scholar
Courneya KS, Friedenreich CM. Utility of the theory of planned behavior for understanding exercise during breast cancer treatment. Psychooncology. 1999;8(2):112–22.
Article
CAS
PubMed
Google Scholar
Courneya KS, Vallance JK, Culos-Reed SN, et al. The Alberta moving beyond breast cancer (AMBER) cohort study: a prospective study of physical activity and health-related fitness in breast cancer survivors. BMC Cancer. 2012;12:525.
Article
PubMed
PubMed Central
Google Scholar
Krahn MD, Zagorski B, Laporte A, et al. Healthcare costs associated with prostate cancer: estimates from a population-based study. BJU Int. 2010;105(3):338–46.
Article
PubMed
Google Scholar
de Oliveira C, Bremner KE, Ni A, Alibhai SM, Laporte A, Krahn MD. Patient time and out-of-pocket costs for long-term prostate cancer survivors in Ontario, Canada. J Cancer Surv. 2014;8(1):9–20.
Article
Google Scholar
de Oliveira C, Bremner KE, Pataky R, et al. Understanding the costs of cancer care before and after diagnosis for the 21 most common cancers in Ontario: a population-based descriptive study. CMAJ Open. 2013;1(1):E1–8.
Article
PubMed
PubMed Central
Google Scholar
Krol M, Brouwer W, Rutten F. Productivity costs in economic evaluations: past, present, future. Pharmacoeconomics. 2013;31(7):537–49.
Article
PubMed
Google Scholar
Herdman M, Gudex C, Lloyd A, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20(10):1727–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrou S, Gray A. Economic evaluation alongside randomised controlled trials: design, conduct, analysis, and reporting. BMJ. 2011;342:d1548.
Article
PubMed
PubMed Central
Google Scholar
Hughes D, Charles J, Dawoud D, et al. Conducting economic evaluations alongside randomised trials: current methodological issues and novel approaches. Pharmacoeconomics. 2016;34(5):447–61.
Article
PubMed
Google Scholar
Barlow WE. Overview of methods to estimate the medical costs of cancer. Med Care. 2009;47(7 Suppl 1):S33–6.
Article
PubMed
PubMed Central
Google Scholar
Willan AR, Briggs AH. Statistical analysis of cost-effectiveness data (statistics in practice). Oxford: Wiley; 2006.
Book
Google Scholar
Willan AR, Lin DY, Cook RJ, Chen EB. Using inverse-weighting in cost-effectiveness analysis with censored data. Stat Methods Med Res. 2002;11(6):539–51.
Article
CAS
PubMed
Google Scholar
Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. BMJ. 2013;f1049:346.
Google Scholar