Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

The progressive elevation of alpha fetoprotein for the diagnosis of hepatocellular carcinoma in patients with liver cirrhosis

  • Oscar Arrieta1, 3Email author,
  • Bernardo Cacho2,
  • Daniela Morales-Espinosa1,
  • Ana Ruelas-Villavicencio2,
  • Diana Flores-Estrada1 and
  • Norma Hernández-Pedro1
Contributed equally
BMC Cancer20077:28

https://doi.org/10.1186/1471-2407-7-28

Received: 10 March 2006

Accepted: 08 February 2007

Published: 08 February 2007

Abstract

Background

Hepatocellular carcinoma is the most common cause of primary liver neoplasms and is one of the main causes of death in patients with liver cirrhosis. High Alpha fetoprotein serum levels have been found in 60–70% of patients with Hepatocellular carcinoma; nevertheless, there are other causes that increase this protein. Alpha fetoprotein levels ≥200 and 400 ng/mL in patients with an identifiable liver mass by imaging techniques are diagnostic of hepatocellular carcinoma with high specificity.

Methods

We analysed the sensitivity and specificity of the progressive increase of the levels of alpha fetoprotein for the detection of hepatocellular carcinoma in patients with liver cirrhosis. Seventy-four patients with cirrhosis without hepatocellular carcinoma and 193 with hepatic lesions diagnosed by biopsy and shown by image scans were included. Sensitivity and specificity of transversal determination of alpha fetoprotein ≥ 200 and 400 ng/mL and monthly progressive elevation of alpha fetoprotein were analysed. Areas under the ROC curves were compared. Positive and negative predictive values adjusted to a 5 and 10% prevalence were calculated.

Results

For an elevation of alpha fetoprotein ≥ 200 and 400 ng/mL the specificity is of 100% in both cases, with a sensitivity of 36.3 and 20.2%, respectively. For an alpha fetoprotein elevation rate ≥7 ng/mL/month, sensitivity was of 71.4% and specificity of 100%. The area under the ROC curve of the progressive elevation was significantly greater than that of the transversal determination of alpha fetoprotein. The positive and negative predictive values modified to a 10% prevalence are of: 98.8% and 96.92%, respectively; while for a prevalence of 5% they were of 97.4% and 98.52%, respectively.

Conclusion

The progressive elevation of alpha fetoprotein ≥7 ng/mL/month in patients with liver cirrhosis is useful for the diagnosis of hepatocellular carcinoma in patients that do not reach αFP levels ≥200 ng/mL. Prospective studies are required to confirm this observation.

Background

Hepatocellular carcinoma (HCC) is the most common cause of primary liver neoplasms and the fourth most frequent type of cancer worldwide with an increasing incidence, causing one million deaths per year[1]. Nowadays, therapeutic options are still not efficient, reaching a global survival rate of 3–10% at 5 years after diagnosis. The major risk factors associated to the development of HCC are infection with hepatitis B virus (HBV), hepatitis C virus (HCV) and cirrhosis of any cause[2]. HCC is one of the main causes of death in patients with Liver Cirrhosis (LC)[3]. The annual risk to develop HCC in patients with LC is 5% (1–7%), with a published prevalence between 7.4 and 23% found in necropsies of this group of patients. Cirrhosis is present in 80–90% of patients with this type of cancer [3].

Alpha-fetoprotein (αFP) is a protein of fetal component produced during the embryonic period by the visceral endoderm of the gestational sac and, later on, by the liver. Its re-expression in patients with HCC has been described for over 40 years. Some studies have demonstrated that the presence of elevated levels of αFP in patients with LC is a risk factor for the development of HCC [46], thus suggesting that increased αFP-production in patients with LC might reflect, largely and abnormal or altered liver cell regeneration. High αFP serum levels have been found in 60–70% of patients with HCC; nevertheless, there are other causes of increased levels, such as cirrhosis, lung cancer, biliary cancer, gastric cancer, pancreatic cancer, teratocarcinoma of the testis, spherocytosis and tyrosinemia[7]. Alpha fetoprotein levels <20 ng/mL are considered normal; with this value as the upper level, this diagnostic test has a sensitivity of 41–65%[4, 8, 9] to diagnose HCC, but a low specificity. The αFP levels diagnostic for HCC are above 400 ng/mL[10] in patients with LC and a solid liver mass >2 cm with typical features in one imaging study. The Italian and the American Association for the Study of Liver Diseases guidelines consider a level ≥200 ng/mL as the cut-off point for diagnosis [8, 9, 1113]. Higher levels of αFP are associated with poor prognostic and survival rates in untreated patients with HCC or those treated with liver transplantation or locoregional therapies[4, 8, 14]. Some experts use αFP determinations and liver ultrasound every 3 to 6 months to detect HCC in patients with liver disease[1517].

There is no concluding evidence available of the changes of αFP levels throughout the disease yet[18]. The aim of our study was to evaluate the progressive elevation of αFP as a diagnostic test in patients with LC with an hepatic lesion suspicious of HCC, and compare it to the transversal determination of αFP ≥200 and 400 ng/mL.

Methods

This study was carried out in a single reference center (Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", National Institute of Medical Sciences and Nutrition) the patients were studied in the time period comprehended between January 1992 and December 2002, in the out-patient clinics of the Internal Medicine and Gastroenterology services. Patients with the diagnosis of LC and serial monthly determinations of αFP levels, were included; the presence of cirrhosis was established by biopsy or clinical data of chronic liver disease, complications such as portal hypertension, esophageal varices with or without a previous episode of bleeding, splenomegaly, ascites with a previous episode of spontaneous bacterial peritonitis in the absence of other non hepatic causes, hepatic encephalopathy in the absence of other metabolic causes, hypoalbuminemia or hyperbilirubinemia in the absence of a known cause of the obstruction of the bile duct of at least one year of appearance with progressive liver failure. All patients in the control group had a minimal follow-up of one year with monthly determination of serum αFP levels and imaging studies every 3 to 6 months in order to assess they did not have HCC. Ultrasound, Computed Tomography and Magnetic Resonance Imaging were the diagnostic studies employed in this work, the use of one or another depended on the treating physicians' personal preferences.

Patients who were diagnosed with HCC by biopsy and had monthly determinations of αFP levels were included as cases. Patients in which the diagnosis of HCC was performed by other means (e.g. alternative methods of imaging diagnosis) were excluded. Files from the clinical archive were reviewed. The exclusion criteria were: patients with incomplete files, patients who did not meet diagnosis criteria for LC or HCC, patients who were misdiagnosed, or who did not have at least three serial monthly determinations of the levels of αFP reported. A database was done registering clinical and pathological information. All patients were classified based on the Child-Pugh-Turcotte criteria (based on serum bilirubin and albumin, ascites, neurological disorder and nutrition), which are established prognostic factors in patients with liver cirrhosis undergoing surgery [19, 20].

The comparison of the clinical and pathological characteristics between patients with and without an elevation of αFP ≥ 200 and 400 ng/mL, as well as between those with and without progressive elevation was done with student's T test and Mann-Whitney's U for continuous variables with and without normal distribution, respectively. For comparisons between more than three variables, ANOVA and Tukey correction tests were used. Qualitative variables were compared with Chi squared and exact Fisher's test. A p value <0.05 was considered as significant.

Sensitivity (i.e. True Positive Rate) and specificity (i.e. True Negative Rate) were obtained by determining the levels of αFP and its progressive elevation (the average monthly increase of at least three measurements was required), using SPSS statistical software version 10.0.

The Receiving Operating Characteristic (ROC) Analysis curves and the corresponding area under the curve were calculated to provide the accuracy of serum αFP in differentiating HCC and LC patients. Non-parametric estimates of the area under the ROC curve and the respective standard error were applied. Positive (PPV) and Negative (NPV) predictive values were evaluated in our study considering a prevalence of HCC of 5 and 10%. This was done with EPIDAT software version 3.

The experimental research reported in this manuscript has been performed with the approval of the Institutional Review Board and Ethics Committee of the National Institute of Medical Sciences and Nutrition and is in compliance with the Helsinki Declaration.

Results

We obtained 212 files of patients with the diagnosis of HCC and 202 of patients with LC; from which 193 and 74 patients were included, respectively. The main causes of exclusion were: incomplete files, lack of αFP determinations, and an ambiguous diagnosis. No differences were found among the patients considered as controls and those excluded with LC regarding female gender (60 vs 63%, p = 0.9), age (51. 7 ± 1.7 vs 50.7 ± 2 years; p = 0.8), Child (A/B/C 40/42/18 vs 55/34/11%, p = 0.4) and etiology (alcoholic 11.2 vs 14, HCV 45 vs 50, cryptogenic 32 vs 15.9 p = 0.5), serum αFP levels (8.2 ± 2.2 vs 13 ± 4.4 ng/mL, p = 0.3). This analysis included only 85 of the excluded patients due to an insufficient accuracy of the medical files.

The minimal follow-up time of the patients with LC without HCC (control cases) was of one year. The median follow-up time of the patients with HCC was of 4.5 ± 1.2 months. Seventy-five percent of the patients with HCC had a tumor size >5 cm. Tumors were multicentric in 22% and poorly differentiated in 35%. General characteristics of patients with HCC and LC are described in Table 1. We found a greater proportion of men and a greater mean age for patients with HCC. No differences regarding the Child-Pugh score were found between groups. The αFP level was significantly higher for patients with HCC compared to patients with LC (8.2 ± 2.2 vs 271 ± 46 ng/mL, respectively, p < 0.001). The progressive elevation of αFP was greater in patients with HCC when compared to patients with LC (0.34 ± 0.2 vs 62.3 ± 13.5 ng/mL/month, respectively, p < 0.001) (Table 1). No differences were found between the αFP elevation and the Child-Pugh score, age, gender, etiology, differentiation grade and tumour size amongst patients with HCC (Table 2). All patients of both groups have at least 3 determinations of αFP. The median number of αFP determinations was of 3, range from 3 to 5 in both groups. The average increase of the levels of αFP in patients with αFP basal levels <20 ng/mL was of 15.8 ng/mL ± STD error 10.7, 67.9 ng/mL ± 38 in the patients with a basal αFP level between 20 and 100 ng/mL, and 76.3 ng/mL ± 18 for the patients with αFP levels >200 ng/mL (p = 0.211). An elevation of αFP ≥7 ng/mL/month in one determination was observed in 16.4% and 70.8% of patients with LC and HCC, respectively; while 1.8% and 43.2% of patients with LC and HCC showed an elevation ≥7 ng/mL/month in two determinations.
Table 1

General characteristics of the patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC)

Characteristics

LC

HCC

P

Female

60%

46%

0.049

Male

40%

64%

 

Age

51.7 ± 1.7

59.9 ± 0.96

0.001

Child-Pugh Score

   

A

40%

47%

 

B

42%

37.3%

0.48

C

18%

15%

 

Etiology

   

Alcoholic

11.2%

26%

 

HBV

0%

7.2%

 

HCV

45%

30%

0.001

Cryptogenic/autoimmune

32%

5.7%

 

Undetermined or absent

11%

30.4%

 

αFP

8.2 ± 2.2

271 ± 46

0.001

αFP > 400

0%

19.6%

0.001

Progressive monthly elevation

0.34 ± .161

62.3 ± 13.5

0.001

Increase of 5 ng/mL/month or greater

1.7%

76.2%

0.001

Table 2

Clinical and pathological factors associated with the levels of αFP in patients with hepatocellular carcinoma (HCC).

Associated Factors

Levels of FP α(ng/mL)

P

Child-Pugh Score

  

A

171 ± 34

0.74

B

229 ± 73

 

C

211 ± 80

 

Mean age

  

<60 years

267 ± 64

0.78

>60 years

132 ± 19

 

Gender

  

Female

164 ± 43

0.49

Male

238 ± 53

 

Etiology

  

HBV

368 ± 36

0.16

HCV

137 ± 23

 

Cryptogenic/autoimmune

52 ± 23

 

Alcoholic

275 ± 99

 

Undetermined or absent

258 ± 90

 

Degree of differentiation

  

Well

167 ± 29

0.16

Moderate

271 ± 87

 

Poor

140 ± 10

 

Tumor Size

  

< 5 cm

267 ± 64

0.66

> 5 cm

132 ± 19

 
The sensitivity and specificity for the transversal determination of αFP varied according to its level as shown in Table 3. For an αFP elevation ≥ 200 and 400 the specificity is of 100% in both cases, with a sensitivity of 36.3 and 20.2%, respectively. The sensitivity and specificity for the progressive determination of αFP are shown in Table 4. In Figure 1, the areas under the ROC curves for the αFP levels and the progression of αFP are shown. The area is significantly greater for the αFP progressive elevation group (p < 0.05). In patients with an αFP progression rate ≥7 ng/mL/month a sensitivity of 71.4% and a specificity of 100% were found. We obtained an area under the curve of 0.587 with αFP levels ≥200 ng/ml, and 0.82 with the progressive elevation of αFP ≥ 7 ng/mL/month, p < 0.001.
Table 3

Sensitivity and Specificity for the transversal determinations of αFP for the diagnosis of hepatocellular carcinoma (HCC)

αFP (ng/mL)

Sensitivity (%)

Specificity (%)

0.3

99.5

0

2.5

92.2

29.7

5.1

83.9

57

7.5

77.7

72

10.2

71

88

15.5

64.2

96

20.3

60.6

96

25.6

58.5

96

51.35

51.8

99

72.5

48.7

99

98.65

47.2

99

111

45.6

99

130

43

99

160

38.9

100

190

36.3

100

215

34.7

100

280

24.4

100

330

21.8

100

395

20.2

100

415

18.7

100

Table 4

Sensitivity and Specificity for the progression rate of αFP

Progression rate (ng/mL/month)

Sensitivity (%)

Specificity (%)

-3.43

100

0

0.1065

95.2

56

0.2335

92.1

70

0.66

87.3

82

0.94

84.1

85

1.6

81

89

2.15

81

94

2.64

81

95

3.01

79.4

95

3.29

79.4

97

4.04

77.8

97

4.75

77.8

99

5.07

76.2

99

5.47

74.6

99

5.84

71.4

100

8.87

66.7

100

10.8

65.1

100

16.83

52.4

100

20.4

46

100

28.94

38.1

100

Figure 1

ROC curve for the progressive elevation of αFP and αFP levels. The area under the curve for the progressive elevation of αFP is significantly greater than the area under the curve for αFP levels (p < 0.05). (AUC = Area Under the Curve).

For patients with baseline αFP levels >7–20, sensitivity, specificity, positive predictive value (PPV) and negative predictive values (NPV) were: 50, 100, 100 and 78.7%, respectively. For those with αFP baseline levels from 21 to 100, sensitivity, specificity, PPV and NPV were of 85, 100, 100 y 87.5%, respectively; between 101 and 200, these values were of 50, 100, 100 y 25%, respectively.

Table 5 reports a PPV and NPV of ≥200 and 400 ng/mL, as well as for the progressive elevation of αFP ≥7 ng/mL/month taking into account a prevalence of 5 and 10%. The positive and negative predictive values for the progressive elevation of αFP ≥7 ng/mL/month modified to a 10% prevalence are of: 98.8% and 96.92%, respectively; while for a prevalence of 5% they were of 97.4% and 98.52%, respectively. This PPV could be used to reveal the neoplastic nature of a liver mass occurring during surveillance in patients without a transversal elevation of αFP.
Table 5

Positive Predictive Value (PPV) and Negative Predictive Value (NPV) for the diagnosis of HCC with αFP values ≥200, αFP values ≥ 400 ng/mL and with the progressive elevation of αFP of 5 ng/mL with a prevalence of 5 and 10%.

αFP

HCC Prevalence (%)

PPV (%)

NPV (%)

≥200 ng/ml

10

97.58

93.4

 

5

95.03

96.7

≥400 ng/ml

10

95.7

91.86

 

5

91.4

95.97

Elevation ≥7 ng/ml/month

10

98.7

96.92

 

5

97.4

98.52

Discussion

Many studies have evaluated the αFP serum levels as a diagnostic test for HCC in patients with LC[9]. Due to the poor prognosis of patients with HCC, in order to improve survival, the therapeutic approach mainly depends on an early diagnosis. Besides being a diagnostic tool, determination of αFP has also been used to evaluate the response to treatment and, moreover, to detect recurrences[10, 21]; other studies have demonstrated that elevated levels of αFP are an independent risk factor for the development of HCC in patients with LC[5, 6].

The causes of liver disease in our study were: alcoholic liver disease, infection with either hepatitis B or hepatitis C viruses, and cryptogenic (Table 1), as previously reported; but with a different frequency[22, 23]. Studies have found differences in the αFP levels related to: the tumoral size and tumor doubling time the Child-Pugh score and the age of patients with HCC[21, 24, 25]; however this was not corroborated either in our study, or by other authors[2628]. Even though the patients in our study had a close follow-up, 75% were found to have large tumors (>5 cm). Although there are studies suggesting that an intensive surveillance program may identify smaller tumors, this is still controversial [29, 30]. Furthermore, other studies have not found a statistically significant relationship between the positivity of αFP and tumoral size, degree of vascular invasion and the histological differentiation grade of the tumor. Nevertheless, patients with positive staining for αFP had a worse prognosis than those with negative staining [31].

The sensitivity and specificity of αFP for the detection of HCC has been reported from 17 to 76% and 80 to 100%, respectively (Table 6)[8, 18, 3236]. We found that an αFP value ≥200 and 400 ng/mL has a sensitivity of 36.3% and 20.2%, respectively, and specificity of 100% in both groups; a study with 340 patients found similar results[18]. There can be a transitory elevation of αFP in patients with cirrhosis and exacerbations of infectious hepatitis[37]. Alpha-fetoprotein levels are not elevated in many patients with HCC, which makes the transversal measuring of the αFP elevation not an optimal diagnostic test. Moreover the clinical usefulness of alpha-fetoprotein in hepatocellular carcinoma management is still being debated [38].
Table 6

Comparison of sensitivity and specificity of the αFP levels for the diagnosis of hepatocellular carcinoma (HCC) of several studies

Authors

αFP 10–16 (ng/mL)

αFP 20 (ng/mL)

αFP 100 (ng/mL)

αFP 200 (ng/mL)

αFP 300 (ng/mL)

αFP 400 (ng/mL)

 

S (%)

E (%)

S (%)

E (%)

S (%)

E (%)

S (%)

E (%)

S (%)

E (%)

S (%)

E (%)

Oka et al 1994

  

39

76

13

97

      

Pateron et al 1994

50

86

  

21

93

      

Peng et al 1999

  

65

87

  

45

100

    

Tong et al 2001

  

41

94

        

Trevisani et al 2001

62.4

89.4

60

90.6

31.2

98.8

22

99

22.4

99.4

17.1

99.4

Gebo et al 2002*

  

60

       

0–64

100

Nguyen et al 2002

78.4

61.1

63

80

41.4

97.3

32

100

    

Gupta et al 2003*

  

41–65

80–94

        

Farinati et al 2006

  

54

       

18

 

Arrieta 2007+

63.2

95.9

60.6

95.9

47.2

99

36.3

100

22.8

100

20.2

100

S = sensitivity, E = specificity.

* Literature review

+ Present study

We observed that an αFP monthly average progression rate ≥7 ng/mL/month of at least 3 determinations, has a sensitivity and specificity of 71.4 and 100%, respectively. The elevation of αFP after one month of follow-up sometimes did not show any changes; we realized that 3 determinations were required in order to have a more accurate test.

The αFP progression rate and a tumor-suggestive image – together – could be employed to diagnose HCC. This approach could be of special interest in patients with LC and clinical suspicious of HCC, who are not candidates neither for biopsy nor for surgical treatment and who do not reach an αFP level ≥200 ng/mL; they could benefit of being diagnosed with HCC and initiate treatment without waiting for αFP levels to reach a value ≥ 200 or ≥400 ng/mL. Many patients with a suggestive image of HCC can not be biopsied due either to coagulation abnormalities or location of the tumor or due to the presence of massive ascites among other causes; also, many patients do not reach the value of 200 or 400 ng/mL (in our study 63.7% and 79.8%, respectively), reason why the progressive elevation of αFP could help to establish the diagnosis without the need of biopsy and could allow the inclusion of these patients to treatment study protocols. On the other hand, the continuous increase of aFP should induce the start of research protocols for HCC and eventually enrollment of these patients in a transplantation program even before the tumor becomes detectable.

There are few existing studies that evaluate the utilization of serial determinations of αFP for the diagnosis of HCC and none compares it to the transversal determination of αFP at its best specificity level (≥ 200 ng/mL)[18, 39, 40]. A study demonstrated that a fast and sudden elevation of αFP in patients with liver lesions detected more HCC when compared to other elevation patterns in patients with cirrhosis and hepatic lesions[41]. Many studies have been done to increase the specificity of the measurement of αFP for the diagnosis of HCC depending on its binding capacity to different molecules; however its use is expensive and it is not widely available[2, 42].

Even though high αFP levels may be more indicative of HCC in patients with LC without viral infection [9], the type of viral infection (HBV or HCV) does not seem to have a direct influence on the serum αFP levels in patients with HCC [21, 43]. A limitation of this study are the differences in etiology between both study groups, mainly regarding HBV patients, which could cause the differences in the αFP levels. Also, since it is a retrospective study, it was not possible to match both groups from the beginning. Prospective studies need to be done in order to corroborate our findings and to perform a cost-benefit analysis of this test. Nevertheless, these studies might be difficult to perform; as a matter of fact, if we consider that approximately 5% of the patients with viral hepatitis and LC develop HCC within a year, the number of patients with LC needed to carry out such studies is rather large.

Conclusion

In conclusion, the average progressive elevation of αFP ≥7 ng/mL/month and a tumor-suggestive image – together – in patients with LC could be a very useful tool for the detection of HCC, especially in those patients without a transversal αFP elevation ≥200 ng/mL.

Notes

Declarations

Authors’ Affiliations

(1)
Department of Medical Oncology, Instituto Nacional de Cancerología (INCan)
(2)
Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" (INCMNSZ)
(3)
Universidad Nacional Autónoma de México (UNAM)

References

  1. El-Serag HB: Hepatocellular carcinoma: An Epidemiologic View. J Clin gastroenterol. 2002, 35 (Suppl 2): S72-S78. 10.1097/00004836-200211002-00002.View ArticlePubMedGoogle Scholar
  2. Hasan F, Jeffers LJ, De Medina M, Reddy KR, Parker T, Schiff ER, Houghton M, Choo QL, Kuo G: Hepatitis-C associated hepatocellular carcinoma. Hepatology. 1990, 12: 589-591.View ArticlePubMedGoogle Scholar
  3. Aguayo A, Patt YZ: Liver cancer. Clin Liver Dis. 2001, 5: 479-507. 10.1016/S1089-3261(05)70175-6.View ArticlePubMedGoogle Scholar
  4. Harada T, Shigeta K, Noda K, Fukumoto Y, Nishimura H, Mizuta M, Takemoto T: Clinical implications of slpha-fetoprotein in liver cirrhosis: five-year follow-up study. Hepatogastroenterol. 1980, 27 (3): 169-75.Google Scholar
  5. Rodriguez-Diaz JL, Rosas-Camargo V, Vega-Vega O, Morales-Espinosa D, Martínez-Tlahuel JL, Gamboa-Domínguez A, Arrieta O: Clinical and Pathological Factors associated with the development of hepatocellular carcinoma in patients with hepatitis virus-related cirrhosis: a long-term follow-up study. Clin Oncol. 2007.Google Scholar
  6. Arrieta O, Rodríguez-Díaz J, Rosas-Camargo V, Morales-Espinosa D, Ponce de León S, Kershenobich D, León-Rodríguez E: Colchicine delays the development of hepatocellular carcinoma in patients with hepatitis virus related-liver cirrhosis. Cancer. 2006, 107 (8): 1852-1858. 10.1002/cncr.22198.View ArticlePubMedGoogle Scholar
  7. Mizejewski GJ: Levels of alpha-fetoprotein during pregnancy and early infancy in normal and disease states. Obstet Gynecol Surv. 2003, 58: 804-826. 10.1097/01.OGX.0000099770.97668.18.View ArticlePubMedGoogle Scholar
  8. Farinati F, Marino D, De Giorgio M, Baldan A, Cantarini M, Cursaro C, Rapaccini G, Del Poggio P, Di Nolro M, Benvegnù L, Zoli M, Borzio F, Bernardi M, Trevisani F: Diagnostic and prognostic role of α-fetoprotein in hepatocellular carcinoma: Both or neither?. Am J Gastroenterol. 2006, 101: 524-32. 10.1111/j.1572-0241.2006.00443.x.View ArticlePubMedGoogle Scholar
  9. Trevisani F, D'Intino PE, Morselli-Labate AM: Serum α-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HbsAg and anti-HCV status. J Hepatology. 2001, 34: 570-575. 10.1016/S0168-8278(00)00053-2.View ArticleGoogle Scholar
  10. Bruix J, Sherman M: Management of hepatocellular carcinoma. AASLD Practice Guidelines. Hepatology. 2005, 42 (5): 2208-2236. 10.1002/hep.20933.View ArticleGoogle Scholar
  11. Talwalkar JA, Gores GJ: Diagnosis and staging of hepatocellular carcinoma. Gastroenterology. 2004, 127 (Suppl 1): S126-S132. 10.1053/j.gastro.2004.09.026.View ArticlePubMedGoogle Scholar
  12. Commissione Epatocarcinoma dell'Associazione Italiana per lo Studio del Fegato. Epatocarcinoma: Linee Guida per la Diagnosi e la Terapia. 1998, Bologna: Tipografia Moderna, 235-86.Google Scholar
  13. Trape J, Botargues JM, Porta F, Ricos C, Badal JM, Salinas R, Sala M, Roca A: Reference Change Value for α-Fetoprotein and Its Application in Early Detection of Hepatocellular Carcinoma in Patients with Hepatic Disease. Clin Chem. 2003, 49 (7): 1209-11. 10.1373/49.7.1209.View ArticlePubMedGoogle Scholar
  14. Lerose R, Molinari R, Rocchi E, Manenti F, Villa E: Prognostic features and survival of hepatocellular carcinoma in Italy. Eur J Cancer. 2001, 37: 239-245. 10.1016/S0959-8049(00)00354-3.View ArticlePubMedGoogle Scholar
  15. Sarasin FP, Giostra E, Hadengue A: Cost-effectiveness of screening for detection of small hepatocellular carcinoma in Western patients with Child-Pugh Class A cirrhosis. Am J Med. 1996, 101: 422-434. 10.1016/S0002-9343(96)00197-0.View ArticlePubMedGoogle Scholar
  16. Bolondi L: Surveillance programme of cirrhotic patients for early diagnosis and treatment of hepatocellular carcinoma: a cost effectiveness analysis. Gut. 2001, 48: 251-259. 10.1136/gut.48.2.251.View ArticlePubMedPubMed CentralGoogle Scholar
  17. Yuen MF, Lai CL: Screening for hepatocellular carcinoma: survival benefit and cost-effectiveness. Ann Oncol. 2003, 14: 1463-1467. 10.1093/annonc/mdg400.View ArticlePubMedGoogle Scholar
  18. Oka H, Tamori A, Kuroki T, Kobayashi K, Yamamoto S: Prospective study of α-fetoprotein in cirrhotic patients monitored for development of hepatocellular carcinoma. Hepatology. 1994, 19: 61-66. 10.1016/0270-9139(94)90053-1.View ArticlePubMedGoogle Scholar
  19. Keighley MR, Girdwood RW, Wooler GH, Ionescu MI: Long-term results of surgical treatment for bleeding oesophageal varices in children with portal hypertension. Br J Surg. 1973, 60 (8): 641-6.View ArticlePubMedGoogle Scholar
  20. Christensen E, Schlichting P, Fauerholdt L, Gluud C, Andersen PK, Juhl E, Poulsen H, Tygstrup N: Prognostic value of Child-Turcotte criteria in medically treated cirrhosis. Hepatology. 1984, 4 (3): 430-5.View ArticlePubMedGoogle Scholar
  21. Nomura F, Ohnishi K, Tanabe Y: Clinical Features and prognosis of hepatocellular carcinoma with reference to serum alpha-fetoprotein levels. Cancer. 1989, 64: 1700-1707. 10.1002/1097-0142(19891015)64:8<1700::AID-CNCR2820640824>3.0.CO;2-Z.View ArticlePubMedGoogle Scholar
  22. Colombo M, de Franchis R, Del Ninno E, Sangiovanni A, De Fazio C, Tommasini M, Donato MF, Piva A, Di Carlo V, Dioguardi N: Hepatocellular carcinoma in Italian patients with cirrhosis. N Engl J Med. 1991, 325: 675-80.View ArticlePubMedGoogle Scholar
  23. Zaman SN, Melia WM, Johnson RD, Johnson PJ, Portmann BC, Williams R: Risk factors in development of hepatocellular carcinoma in cirrhosis: Prospective study of 613 patients. Lancet. 1985, 15: 1357-1359. 10.1016/S0140-6736(85)91785-4.View ArticleGoogle Scholar
  24. Tangkijvanich P, Anukulkarnkusol , Sueangool P, Lertmaharit S, Hanvivatvong O, Kullavanijaya P, Poovorawan Y: Clinical characteristics and prognosis of hepatocellular carcinoma. J Clin Gastroenterol. 2000, 31: 302-308. 10.1097/00004836-200012000-00007.View ArticlePubMedGoogle Scholar
  25. Trevisani F, D'Intino PE, Caraceni P, Pizzo M, Stefanini GF, Mazziotti A, Grazi GL, Gozzetti G, Gasbarrini G, Bernardi M: Etiologic factors and clinical presentation of hepatocellular carcinoma. Cancer. 1995, 75: 2220-2232. 10.1002/1097-0142(19950501)75:9<2220::AID-CNCR2820750906>3.0.CO;2-4.View ArticlePubMedGoogle Scholar
  26. Lee H-S, Chung YH, Kim CY: Specificities of serum α-fetoprotein in HbsAg+ and HbsAg-patients in the diagnosis of hepatocellular carcinoma. Hepatology. 1991, 14: 68-72.View ArticlePubMedGoogle Scholar
  27. Kew M: Alpha-fetoprotein in primary liver cancer and other diseases. Gut. 1974, 15: 814-821.View ArticlePubMedPubMed CentralGoogle Scholar
  28. Bolondi L, Benzi G, Santi V, Gaiani S, Li Bassi SL, Zironi G, Mazziotti A, Sama C, Grigioni W, Gozzetti G: Relationship between alpha-fetoprotein serum levels, tumour volume and growth rate of hepatocellular carcinoma in a western population. Ital J Gastroenterol. 1990, 22 (4): 190-4.PubMedGoogle Scholar
  29. Mok TS, Yeo W, Yu S, Lai P, Chan HL, Chan AT, Lau JW, Wong H, Leung N, Hui EP, Sung J, Koh J, Mo F, Zee B, Johnson PJ: An extensive surveillance program detected a high incidence of hepatocellular carcinoma among hepatitis B virus carries with abnormal alpha-fetoprotein levels or abdominal ultrasonography results. J Clin Oncol. 2005, 23 (31): 8041-7. 10.1200/JCO.2005.01.9927.View ArticlePubMedGoogle Scholar
  30. Yu EW, Chie WC, Chen TH: Does screening or surveillance for primary hepatocellular carcinoma with ultrasonography improve the prognosis of patients?. Cancer J. 2004, 10 (5): 317-25.View ArticlePubMedGoogle Scholar
  31. Izumi R, Shimizu K, Kiriyama M, Hashimoto T, Urade M, Yagi M, Mizukami Y, Nonomura A, Miyazaki I: Alpha-fetoprotein production by hepatocellular carcinoma is prognostic of poor patient survival. J Surg Oncol. 1992, 49 (3): 151-5.View ArticlePubMedGoogle Scholar
  32. Peng YC, Chan CS, Chen GH: The effectiveness of serum alpha-fetoprotein level in anti-HCV positive patients for screening hepatocellular carcinoma. Hepatogastroenterology. 1999, 46: 3208-3211.PubMedGoogle Scholar
  33. Tong Mj, Blatt LM, Kao VW: Surveillance for hepatocellular carcinoma in patients with chronic viral hepatitis in the United States of America. J Gastroenterol Hepatol. 2001, 16: 553-559. 10.1046/j.1440-1746.2001.02470.x.View ArticlePubMedGoogle Scholar
  34. Nguyen MH, Keeffe EB: Screening for hepatocellular carcinoma. Clin Gastroenterol. 2002, 35 (Suppl 2): S86-S91. 10.1097/00004836-200211002-00004.View ArticleGoogle Scholar
  35. Gebo KA, Chander G, Jenckes MW, Ghanem KG, Herlong HF, Torbenson MS, El-Kamary SS, Bass EB: Screening tests for hepatocellular carcinoma in patients with chronic hepatitis C: a systematic review. Hepatology. 2002, 36: S84-S92. 10.1002/hep.1840360711.View ArticlePubMedGoogle Scholar
  36. Gupta S, Bent S, Kohlwes J: Test Characteristics of α-Fetoprotein for Detecting hepatocelullar carcinoma in patients with hepatitis C. Ann Intern Med. 2003, 139: 46-50.View ArticlePubMedGoogle Scholar
  37. Pateron D, Ganne N, Trinchet JC, Aurousseau MH, Mal F, Meicler C, Coderc E, Reboullet P, Beaugrand M: Prospective study of screening for hepatocellular carcinoma in Caucasian patients with cirrhosis. J Hepatol. 1994, 20: 65-71. 10.1016/S0168-8278(05)80468-4.View ArticlePubMedGoogle Scholar
  38. Sherman M: Alphafetoporotein: an obituary. Journal of Hepatology. 2001, 34: 603-605. 10.1016/S0168-8278(01)00025-3.View ArticlePubMedGoogle Scholar
  39. Di Bisceglie A, Hoofnagle JH: Elevations in serum alpha-fetoprotein levels in patients with chronic hepatitis B. Cancer. 1989, 64: 2117-20. 10.1002/1097-0142(19891115)64:10<2117::AID-CNCR2820641024>3.0.CO;2-7.View ArticlePubMedGoogle Scholar
  40. Heyward WL, Lanier AP, McMahon BJ, Fitzgerald MA, Kilkenny S, Paprocki TR: Early detection of primary hepatocellular carcinoma. JAMA. 1985, 254: 3052-3054. 10.1001/jama.254.21.3052.View ArticlePubMedGoogle Scholar
  41. Kuwuahara T, Sakai , Majima Y, Hirai K, Tanikawa K: Serial changes in serum alpha-fetoprotein prior to detection of hepatocellular carcinoma in liver cirrhosis. Hepatogastroenterol. 1993, 40: 347-351.Google Scholar
  42. Sato Y, Nakata K, Kato Y, Shima M, Ishii N, Koji T, Taketa K, Endo Y, Nagataki S: Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med. 1993, 328: 1802-1806. 10.1056/NEJM199306243282502.View ArticlePubMedGoogle Scholar
  43. Cedrone A, Covino M, Caturelli E, Pompili M, Lorenzelli G, Villani MR, et al: Utility of α-fetoprotein (AFP) in the screening of patients with virus-related chronic liver disease: does different viral etiology influence AFP levels in HCC? A study in 350 Western patients. Hepatogastroenterology. 2000, 47: 1654-1658.PubMedGoogle Scholar
  44. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/7/28/prepub

Copyright

© Arrieta et al; licensee BioMed Central Ltd. 2007

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement