Jackson JG, Pereira-Smith OM: p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res. 2006, 66 (17): 8356-8360. 10.1158/0008-5472.CAN-06-1752.
Article
CAS
PubMed
Google Scholar
Brooks CL, Gu W: p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006, 21 (3): 307-315. 10.1016/j.molcel.2006.01.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol. 2006, 8 (l): 37-45. 10.1038/ncb1337.
Article
CAS
PubMed
Google Scholar
Myers JS, Cortez D: Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem. 2006, 281 (14): 9346-9350. 10.1074/jbc.M513265200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Gilkes DM, Pan Y, Lane WS, Chen J: ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. Embo J. 2005, 24 (19): 3411-3422. 10.1038/sj.emboj.7600812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng Q, Chen L, Li Z, Lane WS, Chen J: ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. Embo J. 2009, 28 (24): 3857-67. 10.1038/emboj.2009.294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, et al: ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001, 15 (9): 1067-1077. 10.1101/gad.886901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moumen A, Masterson P, O'Connor MJ, Jackson SP: hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell. 2005, 123 (6): 1065-1078. 10.1016/j.cell.2005.09.032.
Article
CAS
PubMed
Google Scholar
Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I: p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell. 2002, 1 (5): 493-503. 10.1016/S1535-6108(02)00068-5.
Article
CAS
PubMed
Google Scholar
Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, Syvaoja J, Saluz HP, Haenel F, Eilers M: Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell. 2002, 10 (3): 509-521. 10.1016/S1097-2765(02)00633-0.
Article
CAS
PubMed
Google Scholar
Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD: Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA. 1999, 96 (24): 13777-13782. 10.1073/pnas.96.24.13777.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M, Haupt Y: Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene. 1999, 18 (21): 3205-3212. 10.1038/sj.onc.1202656.
Article
CAS
PubMed
Google Scholar
Unger T, Juven-Gershon T, Moallem E, Berger M, Vogt Sionov R, Lozano G, Oren M, Haupt Y: Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. Embo J. 1999, 18 (7): 1805-1814. 10.1093/emboj/18.7.1805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, et al: p53AIPl, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000, 102 (6): 849-862. 10.1016/S0092-8674(00)00073-8.
Article
CAS
PubMed
Google Scholar
Cai X, Liu X: Inhibition of Thr-55 phosphorylation restores p53 nuclear localization and sensitizes cancer cells to DNA damage. Proc Natl Acad Sci USA. 2008, 105 (44): 16958-16963. 10.1073/pnas.0804608105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li HH, Li AG, Sheppard HM, Liu X: Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role forTAFl in cell G1 progression. Mol Cell. 2004, 13 (6): 867-878. 10.1016/S1097-2765(04)00123-6.
Article
CAS
PubMed
Google Scholar
Warters RL, Gaffney DK, Kramer GF, Martinez JD, Cress AE: Transient dephosphorylation of p53 serine 376 as an early response to ionizing radiation. Radiat Res. 2009, 171 (6): 725-734. 10.1667/RR1576.1.
Article
CAS
PubMed
Google Scholar
Jackson MW, Agarwal MK, Agarwal ML, Agarwal A, Stanhope-Baker P, Williams BR, Stark GR: Limited role of N-terminal phosphoserine residues in the activation of transcription by p53. Oncogene. 2004, 23 (25): 4477-4487. 10.1038/sj.onc.1207575.
Article
CAS
PubMed
Google Scholar
Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science. 1991, 253 (5015): 49-53. 10.1126/science.1905840.
Article
CAS
PubMed
Google Scholar
Vousden KH, Prives C: P53 and prognosis: new insights and further complexity. Cell. 2005, 120 (1): 7-10.
CAS
PubMed
Google Scholar
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303 (5659): 844-848. 10.1126/science.1092472.
Article
CAS
PubMed
Google Scholar
Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT: Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem. 2004, 279 (51): 53015-53022. 10.1074/jbc.M410233200.
Article
CAS
PubMed
Google Scholar
Drakos E, Atsaves V, Li J, Leventaki V, Andreeff M, Medeiros LJ, Rassidakis GZ: Stabilization and activation of p53 downregulates mTOR signaling through AMPK in mantle cell lymphoma. Leukemia. 2009, 23 (4): 784-790. 10.1038/leu.2008.348.
Article
CAS
PubMed
Google Scholar
Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A: H2AX: the histone guardian of the genome. DNA Repair (Amst). 2004, 3 (8-9): 959-967. 10.1016/j.dnarep.2004.03.024.
Article
CAS
Google Scholar
Secchiero P, Barbarotto E, Tiribelli M, Zerbinati C, di lasio MG, Gonelli A, Cavazzini F, Campioni D, Fanin R, Cuneo A, et al: Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood. 2006, 107 (10): 4122-4129. 10.1182/blood-2005-11-4465.
Article
CAS
PubMed
Google Scholar
Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004, 73: 39-85. 10.1146/annurev.biochem.73.011303.073723.
Article
CAS
PubMed
Google Scholar
Pietenpol JA, Stewart ZA: Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology. 2002, 475-481. 10.1016/S0300-483X(02)00460-2. 181-182
Verma R, Rigatti MJ, Belinsky GS, Godman CA, Giardina C: DNA damage response to the Mdm2 inhibitor Nutlin-3. Biochem Pharmacol. 2010, 79 (4): 565-74. 10.1016/j.bcp.2009.09.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998, 273 (10): 5858-5868. 10.1074/jbc.273.10.5858.
Article
CAS
PubMed
Google Scholar
Zhou C, Li Z, Diao H, Yu Y, Zhu W, Dai Y, Chen FF, Yang J: DNA damage evaluated by gammaH2AX foci formation by a selective group of chemical/physical stressors. Mutat Res. 2006, 604 (l-2): 8-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chicheportiche A, Bernardino-Sgherri J, de Massy B, Dutrillaux B: Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse. J Cell Sci. 2007, 120 (Pt 10): 1733-1742. 10.1242/jcs.004945.
Article
CAS
PubMed
Google Scholar
Shirangi TR, Zaika A, Moll UM: Nuclear degradation of p53 occurs during down-regulation of the p53 response after DNA damage. Faseb J. 2002, 16 (3): 420-422.
CAS
PubMed
Google Scholar
Zhao H, Traganos F, Darzynkiewicz Z: Phosphorylation of p53 on Serl5 during cell cycle caused by Topo I and Topo II inhibitors in relation to ATM and Chk2 activation. Cell Cycle. 2008, 7 (19): 3048-3055. 10.4161/cc.7.19.6750.
Article
CAS
PubMed
PubMed Central
Google Scholar