Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003, 3: 721-732. 10.1038/nrc1187.
Article
CAS
PubMed
Google Scholar
Semenza GL: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2009
Google Scholar
Wang GL, Jiang BH, Rue EA, Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995, 92: 5510-5514. 10.1073/pnas.92.12.5510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qing G, Simon MC: Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev. 2009, 19: 60-66. 10.1016/j.gde.2008.12.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mabjeesh NJ, Amir S: Hypoxia-inducible factor (HIF) in human tumorigenesis. Histol Histopathol. 2007, 22: 559-572.
CAS
PubMed
Google Scholar
Semenza GL: Involvement of hypoxia-inducible factor 1 in human cancer. Intern Med. 2002, 41: 79-83. 10.2169/internalmedicine.41.79.
Article
CAS
PubMed
Google Scholar
Burkitt K, Chun SY, Dang DT, Dang LH: Targeting both HIF-1 and HIF-2 in human colon cancer cells improves tumor response to sunitinib treatment. Mol Cancer Ther. 2009, 8: 1148-1156. 10.1158/1535-7163.MCT-08-0944.
Article
CAS
PubMed
Google Scholar
Kaelin WG: The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007, 13: 680s-684s. 10.1158/1078-0432.CCR-06-1865.
Article
CAS
PubMed
Google Scholar
Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD: The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell. 2002, 1: 247-255. 10.1016/S1535-6108(02)00044-2.
Article
CAS
PubMed
Google Scholar
Kondo K, Kim WY, Lechpammer M, Kaelin WG: Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 2003, 1: E83-
Article
PubMed
PubMed Central
Google Scholar
Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG: Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell. 2002, 1: 237-246. 10.1016/S1535-6108(02)00043-0.
Article
CAS
PubMed
Google Scholar
Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA: Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA. 1996, 93: 10595-10599. 10.1073/pnas.93.20.10595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, Wykoff CC, Maher ER, Harris AL, Ratcliffe PJ, Maxwell PH: HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell. 2002, 1: 459-468. 10.1016/S1535-6108(02)00071-5.
Article
CAS
PubMed
Google Scholar
Biswas S, Troy H, Leek R, Chung YL, Li JL, Raval RR, Turley H, Gatter K, Pezzella F, Griffiths JR, et al: Effects of HIF-1alpha and HIF2alpha on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts. J Oncol. 2010, 2010: 757908-
Article
PubMed
PubMed Central
Google Scholar
Verheul HM, Salumbides B, Van Erp K, Hammers H, Qian DZ, Sanni T, Atadja P, Pili R: Combination strategy targeting the hypoxia inducible factor-1 alpha with mammalian target of rapamycin and histone deacetylase inhibitors. Clin Cancer Res. 2008, 14: 3589-3597. 10.1158/1078-0432.CCR-07-4306.
Article
CAS
PubMed
Google Scholar
Carroll VA, Ashcroft M: Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res. 2006, 66: 6264-6270. 10.1158/0008-5472.CAN-05-2519.
Article
CAS
PubMed
Google Scholar
Toschi A, Lee E, Gadir N, Ohh M, Foster DA: Differential dependence of hypoxia-inducible factors 1{alpha} and 2{alpha} on mTORC1 and mTORC2. J Biol Chem. 2008, 283: 34495-34499. 10.1074/jbc.C800170200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rapisarda A, Uranchimeg B, Sordet O, Pommier Y, Shoemaker RH, Melillo G: Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 2004, 64: 1475-1482. 10.1158/0008-5472.CAN-03-3139.
Article
CAS
PubMed
Google Scholar
Koh MY, Spivak-Kroizman T, Venturini S, Welsh S, Williams RR, Kirkpatrick DL, Powis G: Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther. 2008, 7: 90-100. 10.1158/1535-7163.MCT-07-0463.
Article
CAS
PubMed
Google Scholar
Semenza GL: Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets. 2006, 10: 267-280. 10.1517/14728222.10.2.267.
Article
CAS
PubMed
Google Scholar
Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, Rey S, Hammers H, Chang D, Pili R, et al: Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci USA. 2008, 105: 19579-19586. 10.1073/pnas.0809763105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M, Frydenlund HF, Albaek C, Schroder H, Orum H: A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther. 2008, 7: 3598-3608. 10.1158/1535-7163.MCT-08-0510.
Article
CAS
PubMed
Google Scholar
Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, et al: Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell. 2004, 6: 33-43. 10.1016/j.ccr.2004.06.009.
Article
CAS
PubMed
Google Scholar
Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C: Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett. 1999, 460: 251-256. 10.1016/S0014-5793(99)01359-9.
Article
CAS
PubMed
Google Scholar
Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM: Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem. 2002, 277: 29936-29944. 10.1074/jbc.M204733200.
Article
CAS
PubMed
Google Scholar
Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, Zhong H: Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002, 62: 2478-2482.
CAS
PubMed
Google Scholar
Katschinski DM, Le L, Schindler SG, Thomas T, Voss AK, Wenger RH: Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization. Cell Physiol Biochem. 2004, 14: 351-360. 10.1159/000080345.
Article
CAS
PubMed
Google Scholar
Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL: RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell. 2007, 25: 207-217. 10.1016/j.molcel.2007.01.001.
Article
PubMed
PubMed Central
Google Scholar
Bisht KS, Bradbury CM, Mattson D, Kaushal A, Sowers A, Markovina S, Ortiz KL, Sieck LK, Isaacs JS, Brechbiel MW, et al: Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res. 2003, 63: 8984-8995.
CAS
PubMed
Google Scholar
Hollingshead M, Alley M, Burger AM, Borgel S, Pacula-Cox C, Fiebig HH, Sausville EA: In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol. 2005, 56: 115-125. 10.1007/s00280-004-0939-2.
Article
CAS
PubMed
Google Scholar
Sanderson S, Valenti M, Gowan S, Patterson L, Ahmad Z, Workman P, Eccles SA: Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther. 2006, 5: 522-532. 10.1158/1535-7163.MCT-05-0439.
Article
CAS
PubMed
Google Scholar
Alqawi O, Moghaddas M, Singh G: Effects of geldanamycin on HIF-1alpha mediated angiogenesis and invasion in prostate cancer cells. Prostate Cancer Prostatic Dis. 2006, 9: 126-135. 10.1038/sj.pcan.4500852.
Article
CAS
PubMed
Google Scholar
Lang SA, Moser C, Gaumann A, Klein D, Glockzin G, Popp FC, Dahlke MH, Piso P, Schlitt HJ, Geissler EK, Stoeltzing O: Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth. Clin Cancer Res. 2007, 13: 6459-6468. 10.1158/1078-0432.CCR-07-1104.
Article
CAS
PubMed
Google Scholar
Ronnen EA, Kondagunta GV, Ishill N, Sweeney SM, Deluca JK, Schwartz L, Bacik J, Motzer RJ: A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest New Drugs. 2006, 24: 543-546. 10.1007/s10637-006-9208-z.
Article
CAS
PubMed
Google Scholar
Kummar S, Gutierrez ME, Gardner ER, Chen X, Figg WD, Zajac-Kaye M, Chen M, Steinberg SM, Muir CA, Yancey MA, et al: Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur J Cancer. 2010, 46: 340-347. 10.1016/j.ejca.2009.10.026.
Article
CAS
PubMed
Google Scholar
Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP, et al: A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2008, 14: 7940-7946. 10.1158/1078-0432.CCR-08-0221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang KH, Veal JM, Fadden RP, Rice JW, Eaves J, Strachan JP, Barabasz AF, Foley BE, Barta TE, Ma W, et al: Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J Med Chem. 2009, 52: 4288-4305. 10.1021/jm900230j.
Article
CAS
PubMed
Google Scholar
Okawa Y, Hideshima T, Steed P, Vallet S, Hall S, Huang K, Rice J, Barabasz A, Foley B, Ikeda H, et al: SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood. 2009, 113: 846-855. 10.1182/blood-2008-04-151928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breinig M, Caldas-Lopes E, Goeppert B, Malz M, Rieker R, Bergmann F, Schirmacher P, Mayer M, Chiosis G, Kern MA: Targeting heat shock protein 90 with non-quinone inhibitors: a novel chemotherapeutic approach in human hepatocellular carcinoma. Hepatology. 2009, 50: 102-112. 10.1002/hep.22912.
Article
CAS
PubMed
Google Scholar
Chiosis G, Lucas B, Huezo H, Solit D, Basso A, Rosen N: Development of purine-scaffold small molecule inhibitors of Hsp90. Curr Cancer Drug Targets. 2003, 3: 371-376. 10.2174/1568009033481778.
Article
CAS
PubMed
Google Scholar
Taldone T, Gozman A, Maharaj R, Chiosis G: Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol. 2008, 8: 370-374. 10.1016/j.coph.2008.06.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, et al: Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem. 2005, 280: 26729-26734. 10.1074/jbc.C500186200.
Article
CAS
PubMed
Google Scholar
Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005, 18: 601-607. 10.1016/j.molcel.2005.04.021.
Article
CAS
PubMed
Google Scholar
Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, et al: An acetylation site in the middle domain of hsp90 regulates chaperone function. Mol Cell. 2007, 25: 151-159. 10.1016/j.molcel.2006.12.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mie Lee Y, Kim SH, Kim HS, Jin Son M, Nakajima H, Jeong Kwon H, Kim KW: Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem Biophys Res Commun. 2003, 300: 241-246. 10.1016/S0006-291X(02)02787-0.
Article
PubMed
Google Scholar
Kekatpure VD, Dannenberg AJ, Subbaramaiah K: HDAC6 modulates HSP90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. J Biol Chem. 2009
Google Scholar
Fiskus W, Ren Y, Mohapatra A, Bali P, Mandawat A, Rao R, Herger B, Yang Y, Atadja P, Wu J, Bhalla K: Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-alpha levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res. 2007, 13: 4882-4890. 10.1158/1078-0432.CCR-06-3093.
Article
CAS
PubMed
Google Scholar
Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, Pili R: Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006, 66: 8814-8821. 10.1158/0008-5472.CAN-05-4598.
Article
CAS
PubMed
Google Scholar
Liang D, Kong X, Sang N: Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle. 2006, 5: 2430-2435. 10.4161/cc.5.21.3409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J: Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 2006, 26: 2019-2028. 10.1128/MCB.26.6.2019-2028.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lundgren K, Zhang H, Brekken J, Huser N, Powell RE, Timple N, Busch DJ, Neely L, Sensintaffar JL, Yang YC, et al: BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther. 2009, 8: 921-929. 10.1158/1535-7163.MCT-08-0758.
Article
CAS
PubMed
Google Scholar
Yun TJ, Harning EK, Giza K, Rabah D, Li P, Arndt JW, Luchetti D, Biamonte MA, Shi J, Lundgren K, et al: EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol. 2011, 186: 563-575. 10.4049/jimmunol.1000222.
Article
CAS
PubMed
Google Scholar
Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I: Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci USA. 1992, 89: 7919-7923. 10.1073/pnas.89.17.7919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL: Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res. 2003, 63: 6130-6134.
CAS
PubMed
Google Scholar
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999, 399: 271-275. 10.1038/20459.
Article
CAS
PubMed
Google Scholar
Anelli V, Gault CR, Cheng AB, Obeid LM: Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem. 2008, 283: 3365-3375.
Article
CAS
PubMed
Google Scholar
Menrad H, Werno C, Schmid T, Copanaki E, Deller T, Dehne N, Brune B: Roles of hypoxia-inducible factor-1alpha (HIF-1alpha) versus HIF-2alpha in the survival of hepatocellular tumor spheroids. Hepatology. 2010, 51: 2183-2192. 10.1002/hep.23597.
Article
CAS
PubMed
Google Scholar
Bohensky J, Terkhorn SP, Freeman TA, Adams CS, Garcia JA, Shapiro IM, Srinivas V: Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. Arthritis Rheum. 2009, 60: 1406-1415. 10.1002/art.24444.
Article
PubMed
PubMed Central
Google Scholar
Kaluz S, Kaluzova M, Liao SY, Lerman M, Stanbridge EJ: Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: A one transcription factor (HIF-1) show?. Biochim Biophys Acta. 2009, 1795: 162-172.
CAS
PubMed
PubMed Central
Google Scholar
Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ: Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006, 440: 1222-1226. 10.1038/nature04695.
Article
CAS
PubMed
Google Scholar
Mizukami Y, Kohgo Y, Chung DC: Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res. 2007, 13: 5670-5674. 10.1158/1078-0432.CCR-07-0111.
Article
CAS
PubMed
Google Scholar
Robey IF, Stephen RM, Brown KS, Baggett BK, Gatenby RA, Gillies RJ: Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia. 2008, 10: 745-756.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Gaspard JP, Chung DC: Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 2001, 61: 6050-6054.
CAS
PubMed
Google Scholar
Semenza GL: HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev. 2000, 19: 59-65. 10.1023/A:1026544214667.
Article
CAS
PubMed
Google Scholar
Bohonowych JE, Gopal U, Isaacs JS: Hsp90 as a gatekeeper of tumor angiogenesis: clinical promise and potential pitfalls. J Oncol. 2010, 2010: 412985-
Article
CAS
PubMed
PubMed Central
Google Scholar
Isaacs JS, Jung YJ, Neckers L: Aryl hydrocarbon nuclear translocator (ARNT) promotes oxygen-independent stabilization of hypoxia-inducible factor-1alpha by modulating an Hsp90-dependent regulatory pathway. J Biol Chem. 2004, 279: 16128-16135. 10.1074/jbc.M313342200.
Article
CAS
PubMed
Google Scholar
Qian DZ, Kato Y, Shabbeer S, Wei Y, Verheul HM, Salumbides B, Sanni T, Atadja P, Pili R: Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin Cancer Res. 2006, 12: 634-642. 10.1158/1078-0432.CCR-05-1132.
Article
CAS
PubMed
Google Scholar
Tacchini L, Dansi P, Matteucci E, Desiderio MA: Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis. 2001, 22: 1363-1371. 10.1093/carcin/22.9.1363.
Article
CAS
PubMed
Google Scholar
Koga F, Tsutsumi S, Neckers LM: Low dose geldanamycin inhibits hepatocyte growth factor and hypoxia-stimulated invasion of cancer cells. Cell Cycle. 2007, 6: 1393-1402. 10.4161/cc.6.11.4296.
Article
CAS
PubMed
Google Scholar
Kong D, Li Y, Wang Z, Banerjee S, Sarkar FH: Inhibition of angiogenesis and invasion by 3,3'-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res. 2007, 67: 3310-3319. 10.1158/0008-5472.CAN-06-4277.
Article
CAS
PubMed
Google Scholar
Gopal U, Bohonowych JE, Lema-Tome C, Liu A, Garrett-Mayer E, Wang B, Isaacs JS: A novel extracellular Hsp90 mediated co-receptor function for LRP1 regulates EphA2 dependent glioblastoma cell invasion. PLoS One. 2011, 6: e17649-10.1371/journal.pone.0017649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andreasen PA, Egelund R, Petersen HH: The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci. 2000, 57: 25-40. 10.1007/s000180050497.
Article
CAS
PubMed
Google Scholar
Sullivan R, Graham CH: Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev. 2007, 26: 319-331. 10.1007/s10555-007-9062-2.
Article
CAS
PubMed
Google Scholar
Xu K, Ding Q, Fang Z, Zheng J, Gao P, Lu Y, Zhang Y: Silencing of HIF-1alpha suppresses tumorigenicity of renal cell carcinoma through induction of apoptosis. Cancer Gene Ther. 2010, 17: 212-222. 10.1038/cgt.2009.66.
Article
CAS
PubMed
Google Scholar
Xie Q, Gao CF, Shinomiya N, Sausville E, Hay R, Gustafson M, Shen Y, Wenkert D, Vande Woude GF: Geldanamycins exquisitely inhibit HGF/SF-mediated tumor cell invasion. Oncogene. 2005, 24: 3697-3707. 10.1038/sj.onc.1208499.
Article
CAS
PubMed
Google Scholar
Kim LC, Song L, Haura EB: Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 2009, 6: 587-595. 10.1038/nrclinonc.2009.129.
Article
PubMed
Google Scholar
Hauck CR, Hsia DA, Schlaepfer DD: The focal adhesion kinase--a regulator of cell migration and invasion. IUBMB Life. 2002, 53: 115-119. 10.1080/15216540211470.
Article
CAS
PubMed
Google Scholar
Yano A, Tsutsumi S, Soga S, Lee MJ, Trepel J, Osada H, Neckers L: Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc Natl Acad Sci USA. 2008, 105: 15541-15546. 10.1073/pnas.0805354105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang CH, Wei Y: The urokinase receptor and integrins in cancer progression. Cell Mol Life Sci. 2008, 65: 1916-1932. 10.1007/s00018-008-7573-9.
Article
CAS
PubMed
Google Scholar
Palazzo A, Ackerman B, Gundersen GG: Cell biology: tubulin acetylation and cell motility. Nature. 2003, 421: 230-
Article
CAS
PubMed
Google Scholar
Regan PL, Jacobs J, Wang G, Torres J, Edo R, Friedmann J, Tang XX: Hsp90 inhibition increases p53 expression and destabilizes MYCN and MYC in neuroblastoma. Int J Oncol. 2011, 38: 105-112.
CAS
PubMed
PubMed Central
Google Scholar
Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008, 133: 66-77. 10.1016/j.cell.2008.01.046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF: Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008, 11: 109-119. 10.1007/s10456-008-9099-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatterjee A, Snead C, Yetik-Anacak G, Antonova G, Zeng J, Catravas JD: Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L755-763. 10.1152/ajplung.00350.2007.
Article
CAS
PubMed
Google Scholar
Antonov A, Snead C, Gorshkov B, Antonova GN, Verin AD, Catravas JD: Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. Am J Respir Cell Mol Biol. 2008, 39: 551-559. 10.1165/rcmb.2007-0324OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Uchida K, Endler A, Shibasaki F: Mammalian tumor suppressor Int6 specifically targets hypoxia inducible factor 2 alpha for degradation by hypoxia- and pVHL-independent regulation. J Biol Chem. 2007, 282: 12707-12716. 10.1074/jbc.M700423200.
Article
CAS
PubMed
Google Scholar
Koh MY, Darnay BG, Powis G: Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation. Mol Cell Biol. 2008, 28: 7081-7095. 10.1128/MCB.00773-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fath DM, Kong X, Liang D, Lin Z, Chou A, Jiang Y, Fang J, Caro J, Sang N: Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem. 2006, 281: 13612-13619. 10.1074/jbc.M600456200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bendinelli P, Matteucci E, Maroni P, Desiderio MA: NF-kappaB activation, dependent on acetylation/deacetylation, contributes to HIF-1 activity and migration of bone metastatic breast carcinoma cells. Mol Cancer Res. 2009, 7: 1328-1341. 10.1158/1541-7786.MCR-08-0548.
Article
CAS
PubMed
Google Scholar
Kim SH, Jeong JW, Park JA, Lee JW, Seo JH, Jung BK, Bae MK, Kim KW: Regulation of the HIF-1alpha stability by histone deacetylases. Oncol Rep. 2007, 17: 647-651.
CAS
PubMed
Google Scholar
Saito S, Lasky JA, Guo W, Nguyen H, Mai A, Danchuk S, Sullivan DE, Shan B: Pharmacological inhibition of HDAC6 attenuates endothelial barrier dysfunction induced by thrombin. Biochem Biophys Res Commun. 2011
Google Scholar
Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307: 58-62. 10.1126/science.1104819.
Article
CAS
PubMed
Google Scholar
Niu G, Li Z, Cao Q, Chen X: Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with (64) Cu-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging. 2009, 36: 1510-1519. 10.1007/s00259-009-1158-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandarlapaty S, Scaltriti M, Angelini P, Ye Q, Guzman M, Hudis CA, Norton L, Solit DB, Arribas J, Baselga J, Rosen N: Inhibitors of HSP90 block p95-HER2 signaling in Trastuzumab-resistant tumors and suppress their growth. Oncogene. 2010, 29: 325-334. 10.1038/onc.2009.337.
Article
CAS
PubMed
Google Scholar
Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM: Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18 F-FDG PET. J Nucl Med. 2006, 47: 793-796.
CAS
PubMed
PubMed Central
Google Scholar
Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM: Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol. 2004, 22: 701-706. 10.1038/nbt968.
Article
CAS
PubMed
Google Scholar
Niu G, Cai W, Chen K, Chen X: Non-invasive PET imaging of EGFR degradation induced by a heat shock protein 90 inhibitor. Mol Imaging Biol. 2008, 10: 99-106. 10.1007/s11307-007-0123-2.
Article
PubMed
Google Scholar
Kim YS, Alarcon SV, Lee S, Lee MJ, Giaccone G, Neckers L, Trepel JB: Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem. 2009, 9: 1479-1492. 10.2174/156802609789895728.
Article
CAS
PubMed
Google Scholar