Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR: Regulation of transcription by a protein methyltransferase. Science. 1999, 284 (5423): 2174-2177. 10.1126/science.284.5423.2174.
Article
CAS
PubMed
Google Scholar
Stallcup MR, Chen D, Koh SS, Ma H, Lee YH, Li H, Schurter BT, Aswad DW: Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation. Biochem Soc Trans. 2000, 28 (4): 415-418. 10.1042/0300-5127:0280415.
Article
CAS
PubMed
Google Scholar
Chen D, Huang SM, Stallcup MR: Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem. 2000, 275 (52): 40810-40816. 10.1074/jbc.M005459200.
Article
CAS
PubMed
Google Scholar
Koh SS, Chen D, Lee YH, Stallcup MR: Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem. 2001, 276 (2): 1089-1098. 10.1074/jbc.M004228200.
Article
CAS
PubMed
Google Scholar
Lee YH, Koh SS, Zhang X, Cheng X, Stallcup MR: Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities. Mol Cell Biol. 2002, 22 (11): 3621-3632. 10.1128/MCB.22.11.3621-3632.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman RH, Smolik S: CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000, 14 (13): 1553-1577.
CAS
PubMed
Google Scholar
El Messaoudi S, Fabbrizio E, Rodriguez C, Chuchana P, Fauquier L, Cheng D, Theillet C, Vandel L, Bedford MT, Sardet C: Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc Natl Acad Sci USA. 2006, 103 (36): 13351-13356. 10.1073/pnas.0605692103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Covic M, Hassa PO, Saccani S, Buerki C, Meier NI, Lombardi C, Imhof R, Bedford MT, Natoli G, Hottiger MO: Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. Embo J. 2005, 24 (1): 85-96. 10.1038/sj.emboj.7600500.
Article
CAS
PubMed
Google Scholar
An W, Kim J, Roeder RG: Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell. 2004, 117 (6): 735-748. 10.1016/j.cell.2004.05.009.
Article
CAS
PubMed
Google Scholar
Koh SS, Li H, Lee YH, Widelitz RB, Chuong CM, Stallcup MR: Synergistic coactivator function by coactivator-associated arginine methyltransferase (CARM) 1 and beta-catenin with two different classes of DNA-binding transcriptional activators. J Biol Chem. 2002, 277 (29): 26031-26035. 10.1074/jbc.M110865200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frietze S, Lupien M, Silver PA, Brown M: CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res. 2008, 68 (1): 301-306. 10.1158/0008-5472.CAN-07-1983.
Article
CAS
PubMed
Google Scholar
Hong H, Kao C, Jeng MH, Eble JN, Koch MO, Gardner TA, Zhang S, Li L, Pan CX, Hu Z, et al: Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer. 2004, 101 (1): 83-89. 10.1002/cncr.20327.
Article
CAS
PubMed
Google Scholar
Majumder S, Liu Y, Ford OH, Mohler JL, Whang YE: Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate. 2006, 66 (12): 1292-1301. 10.1002/pros.20438.
Article
CAS
PubMed
Google Scholar
Lee SJ, Kim HS, Yu R, Lee K, Gardner TA, Jung C, Jeng MH, Yeung F, Cheng L, Kao C: Novel prostate-specific promoter derived from PSA and PSMA enhancers. Mol Ther. 2002, 6 (3): 415-421. 10.1006/mthe.2002.0682.
Article
CAS
PubMed
Google Scholar
Higashimoto K, Kuhn P, Desai D, Cheng X, Xu W: Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc Natl Acad Sci USA. 2007, 104 (30): 12318-12323. 10.1073/pnas.0610792104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu TT, Sikes RA, Cui Q, Thalmann GN, Kao C, Murphy CF, Yang H, Zhau HE, Balian G, Chung LW: Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer. 1998, 77 (6): 887-894. 10.1002/(SICI)1097-0215(19980911)77:6<887::AID-IJC15>3.0.CO;2-Z.
Article
CAS
PubMed
Google Scholar
Jung C, Ou YC, Yeung F, Frierson HF, Kao C: Osteocalcin is incompletely spliced in non-osseous tissues. Gene. 2001, 271 (2): 143-150. 10.1016/S0378-1119(01)00513-3.
Article
CAS
PubMed
Google Scholar
Lee SJ, Lee K, Yang X, Jung C, Gardner T, Kim HS, Jeng MH, Kao C: NFATc1 with AP-3 site binding specificity mediates gene expression of prostate-specific-membrane-antigen. J Mol Biol. 2003, 330 (4): 749-760. 10.1016/S0022-2836(03)00640-5.
Article
CAS
PubMed
Google Scholar
Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A, Southgate C, Dowe A, Dearnaley D, Jhavar S, et al: Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene. 2004, 23 (35): 5871-5879. 10.1038/sj.onc.1207800.
Article
CAS
PubMed
Google Scholar
Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM: Delineation of prognostic biomarkers in prostate cancer. Nature. 2001, 412 (6849): 822-826. 10.1038/35090585.
Article
CAS
PubMed
Google Scholar
Rhodes DR, Sanda MG, Otte AP, Chinnaiyan AM, Rubin MA: Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J Natl Cancer Inst. 2003, 95 (9): 661-668.
Article
CAS
PubMed
Google Scholar
Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, Pienta KJ, Ghosh D, Chinnaiyan AM: alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. Jama. 2002, 287 (13): 1662-1670. 10.1001/jama.287.13.1662.
Article
CAS
PubMed
Google Scholar
Teyssier C, Ou CY, Khetchoumian K, Losson R, Stallcup MR: Transcriptional intermediary factor 1alpha mediates physical interaction and functional synergy between the coactivator-associated arginine methyltransferase 1 and glucocorticoid receptor-interacting protein 1 nuclear receptor coactivators. Mol Endocrinol. 2006, 20 (6): 1276-1286. 10.1210/me.2005-0393.
Article
CAS
PubMed
Google Scholar
Ma H, Baumann CT, Li H, Strahl BD, Rice R, Jelinek MA, Aswad DW, Allis CD, Hager GL, Stallcup MR: Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr Biol. 2001, 11 (24): 1981-1985. 10.1016/S0960-9822(01)00600-5.
Article
CAS
PubMed
Google Scholar
Hassa PO, Covic M, Bedford MT, Hottiger MO: Protein arginine methyltransferase 1 coactivates NF-kappaB-dependent gene expression synergistically with CARM1 and PARP1. J Mol Biol. 2008, 377 (3): 668-678. 10.1016/j.jmb.2008.01.044.
Article
CAS
PubMed
Google Scholar
Ohkura N, Takahashi M, Yaguchi H, Nagamura Y, Tsukada T: Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner. J Biol Chem. 2005, 280 (32): 28927-28935. 10.1074/jbc.M502173200.
Article
CAS
PubMed
Google Scholar
Naeem H, Cheng D, Zhao Q, Underhill C, Tini M, Bedford MT, Torchia J: The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol Cell Biol. 2007, 27 (1): 120-134. 10.1128/MCB.00815-06.
Article
CAS
PubMed
Google Scholar
Fauquier L, Duboe C, Jore C, Trouche D, Vandel L: Dual role of the arginine methyltransferase CARM1 in the regulation of c-Fos target genes. FASEB J. 2008, 22 (9): 3337-3347. 10.1096/fj.07-104604.
Article
CAS
PubMed
Google Scholar
Jayne S, Rothgiesser KM, Hottiger MO: CARM1 but not its enzymatic activity is required for transcriptional coactivation of NF-kappaB-dependent gene expression. J Mol Biol. 2009, 394 (3): 485-495. 10.1016/j.jmb.2009.09.032.
Article
CAS
PubMed
Google Scholar
Stallcup MR, Kim JH, Teyssier C, Lee YH, Ma H, Chen D: The roles of protein-protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators. J Steroid Biochem Mol Biol. 2003, 85 (2-5): 139-145. 10.1016/S0960-0760(03)00222-X.
Article
CAS
PubMed
Google Scholar
Barkett M, Gilmore TD: Control of apoptosis by Rel/NF-kappa B transcription factors. Oncogene. 1999, 18 (49): 6910-6924. 10.1038/sj.onc.1203238.
Article
CAS
PubMed
Google Scholar
Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B, Jacks T: P53-Dependent and Independent Expression of P21 during Cell-Growth, Differentiation, and DNA-Damage. Gene Dev. 1995, 9 (8): 935-944. 10.1101/gad.9.8.935.
Article
CAS
PubMed
Google Scholar
Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS: NF-kappa B antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998, 281 (5383): 1680-1683. 10.1126/science.281.5383.1680.
Article
CAS
PubMed
Google Scholar
Grumont RJ, Rourke IJ, Gerondakis S: Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Gene Dev. 1999, 13 (4): 400-411. 10.1101/gad.13.4.400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS: NF-kappa B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Molecular and Cellular Biology. 1999, 19 (8): 5785-5799.
Article
CAS
PubMed
PubMed Central
Google Scholar