Kawai K, Ishihara S, Nozawa H, Hata K, Kiyomatsu T, Tanaka T, et al. Recent advances in neoadjuvant chemoradiotherapy in locally advanced rectal cancer. J Anus Rectum Colon. 2017;1:39–44.
Article
Google Scholar
Kapiteijn E, Marijnen A, Nagtegaal D, Putter H, Steup WH, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345:638–46.
Article
CAS
Google Scholar
Bosset F, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355:1114–23.
Article
CAS
Google Scholar
Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731–40.
Article
CAS
Google Scholar
Crane H, Skibber M, Feig W, Vauthey JN, Thames HD, Curley SA, et al. Response to preoperative chemoradiation increases the use of sphincter-preserving surgery in patients with locally advanced low rectal carcinoma. Cancer. 2003;97:517–24.
Article
Google Scholar
Maas M, Nelemans J, Valentini V, Das P, Rödel C, Kuo LJ, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835–44.
Article
Google Scholar
Capirci C, Valentini V, Cionini L, De Paoli A, Rodel C, Glynne-Jones R, et al. Prognostic value of pathologic complete response after neoadjuvant therapy in locally advanced rectal cancer: long-term analysis of 566 ypCR patients. Int J Radiat Oncol Biol Phys. 2008;72:99–107.
Article
Google Scholar
Stipa F, Chessin B, Shia J, Paty PB, Weiser M, Temple LK, et al. A pathologic complete response of rectal cancer to preoperative combined-modality therapy results in improved oncological outcome compared with those who achieve no downstaging on the basis of preoperative endorectal ultrasonography. Ann Surg Oncol. 2006;13:1047–53.
Article
Google Scholar
van Gijn W, Marijnen M, Nagtegaal D, Kranenbarg EM, Putter H, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12:575–82.
Article
Google Scholar
Rodel C, Graeven U, Fietkau R, Hohenberger W, Hothorn T, Arnold D, et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979–89.
Article
Google Scholar
Aschele C, Cionini L, Lonardi S, Pinto C, Cordio S, Rosati G, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29:2773–80.
Article
CAS
Google Scholar
O’Connell J, Colangelo H, Beart W, Petrelli NJ, Allegra CJ, Sharif S, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J Clin Oncol. 2014;32:1927–34.
Article
CAS
Google Scholar
Gérard P, Azria D, Gourgou-Bourgade S, Martel-Laffay I, Hennequin C, Etienne PL, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol. 2010;28:1638–44.
Article
Google Scholar
Schmoll J, Stein A, Van Cutsem E, Price T, Hofheinz RD, Nordlinger B, et al. Pre- and postoperative capecitabine without or with oxaliplatin in locally advanced rectal cancer: PETACC 6 Trial by EORTC GITCG and ROG, AIO, AGITG, BGDO, and FFCD. J Clin Oncol. 2021;39:17–29.
Article
CAS
Google Scholar
Kawai K, Sunami E, Hata K, Tanaka T, Nishikawa T, Otani K, et al. Phase I/II study of preoperative chemoradiotherapy With TEGAFIRI for locally advanced rectal cancer. Clin Colorectal Cancer. 2018;17:240–6.
Article
Google Scholar
Sebag-Montefiore D, Adams R, Gollins S, Samuel LM, Glynne-Jones R, Harte R, et al. ARISTOTLE: a phase III trial comparing concurrent capecitabine with capecitabine and irinotecan (Ir) chemoradiation as preoperative treatment for MRI-defined locally advanced rectal cancer (LARC). J Clin Oncol. 2020;38(Suppl):4101.
Article
Google Scholar
Buckley M, Lynam-Lennon N, O’Neill H, O’Sullivan J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol. 2020;17:298–313.
Article
CAS
Google Scholar
Löbrich M, Jeggo A. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer. 2007;7:861–9.
Article
Google Scholar
Sharabi B, Lim M, DeWeese L, Drake G. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015;16:e498-509.
Article
Google Scholar
Emons G, Spitzner M, Reineke S, Möller J, Auslander N, Kramer F, et al. Chemoradiotherapy resistance in colorectal cancer cells is mediated by wnt/beta-catenin signaling. Mol Cancer Res. 2017;15:1481–90.
Article
CAS
Google Scholar
Santhanam S, Alvarado M, Ciorba A. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl Res. 2016;167:67–79.
Article
CAS
Google Scholar
Thaker I, Rao S, Bishnupuri S, Kerr TA, Foster L, Marinshaw JM, et al. IDO1 metabolites activate beta-catenin signaling to promote cancer cell proliferation and colon tumorigenesis in mice. Gastroenterology. 2013;145(416–25):e411–4.
Google Scholar
Munn H, Shafizadeh E, Attwood T, Bondarev I, Pashine A, Mellor L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–72.
Article
CAS
Google Scholar
Munn H, Sharma D, Baban B, Harding HP, Zhang Y, Ron D, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42.
Article
CAS
Google Scholar
Sharma D, Baban B, Chandler P, Hou DY, Singh N, Yagita H, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest. 2007;117:2570–82.
Article
CAS
Google Scholar
Puccetti P, Fallarino F. Generation of T cell regulatory activity by plasmacytoid dendritic cells and tryptophan catabolism. Blood Cells Mol Dis. 2008;40:101–5.
Article
CAS
Google Scholar
Li F, Zhang R, Li S, Liu J. IDO1: an important immunotherapy target in cancer treatment. Int Immunopharmacol. 2017;47:70–7.
Article
CAS
Google Scholar
Ferdinande L, Decaestecker C, Verset L, Mathieu A, Moles Lopez X, et al. Clinicopathological significance of indoleamine 2,3-dioxygenase 1 expression in colorectal cancer. Br J Cancer. 2012;106:141–7.
Article
CAS
Google Scholar
Carvajal-Hausdorf E, Mani N, Velcheti V, Schalper A, Rimm L. Objective measurement and clinical significance of IDO1 protein in hormone receptor-positive breast cancer. J Immunother Cancer. 2017;5:81.
Article
Google Scholar
Kang CC, Yamauchi KA, Vlassakis J, Sinkala E, Duncombe TA, Herr AE. Single cell-resolution western blotting. Nat Protoc. 2016;11:1508–30.
Article
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.
Article
CAS
Google Scholar
Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31:229–34.
Article
CAS
Google Scholar
Zhu T, Dancsok R, Nielsen O. Indoleamine dioxygenase inhibitors: clinical rationale and current development. Curr Oncol Rep. 2019;21:2.
Article
Google Scholar
Johnson S, Pacholczyk R, Aguilera D, Al-Basheer A, Bajaj M, Berrong Z, et al. IMMU-04. First-In-Children Phase 1b Study Using The Ido Pathway Inhibitor Indoximod In Combination With Radiation And Chemotherapy For Children With Newly Diagnosed Dipg (NCT02502708, NLG2105). Neuro Oncol. 2021;23:i27.
Johnson S, Aguilera D, Al-Basheer A, Castellino RC, Eaton BR, Esiashvili N, et al. Front-line therapy of DIPG using the IDO pathway inhibitor indoximod in combination with radiation and chemotherapy. Cancer Res. 2018;78 Suppl:CT004.
Chen B, Alvarado M, Iticovici M, Kau NS, Park H, Parikh PJ, et al. Interferon-induced IDO1 mediates radiation resistance and is a therapeutic target in colorectal cancer. Cancer Immunol Res. 2020;8:451–64.
Article
CAS
Google Scholar
Markowitz D, Bertagnolli M. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.
Article
CAS
Google Scholar
Dong Z, Zhou L, Han N, Zhang M, Lyu X. Wnt/beta-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells. Strahlenther Onkol. 2015;191:672–80.
Article
Google Scholar
Gomez-Millan J, Perez L, Aroca I, Del Mar DM, De Luque V, Román A, et al. Preoperative chemoradiotherapy in rectal cancer induces changes in the expression of nuclear β-catenin: prognostic significance. BMC Cancer. 2014;14:192.
Article
Google Scholar
Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18:545–58.
Article
CAS
Google Scholar
Venkateswaran N, Conacci-Sorrell M. Kynurenine: an oncometabolite in colon cancer. Cell Stress. 2020;4:24–6.
Article
CAS
Google Scholar
Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, et al. l-type amino acid transporter 1 and CD98 expression in primary and metastatic sites of human neoplasms. Cancer Sci. 2008;99:2380–6.
Article
CAS
Google Scholar
Bishnupuri S, Alvarado M, Khouri N, Shabsovich M, Chen B, Dieckgraefe BK, et al. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;79:1138–50.
Article
CAS
Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.
Article
CAS
Google Scholar
Lee G, Goretsky T, Managlia E, Dirisina R, Singh AP, Brown JB, et al. Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology. 2010;139:869–81.
Article
CAS
Google Scholar
Ahmed D, Eide W, Eilertsen A, Danielsen SA, Eknæs M, Hektoen M, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2: e71.
Article
CAS
Google Scholar
Castle C, Loewer M, Boegel S, de Graaf J, Bender C, Tadmor AD, et al. Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genomics. 2014;15:190.
Article
Google Scholar
Maleki Vareki S, Rytelewski M, Figueredo R, Chen D, Ferguson PJ, Vincent M, et al. Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget. 2014;5:2778–91.
Article
Google Scholar
Tang D, Yue L, Yao R, Zhou L, Yang Y, Lu L, et al. P53 prevent tumor invasion and metastasis by down-regulating IDO in lung cancer. Oncotarget. 2017;8:54548–57.
Article
Google Scholar
Yasuda K, Nirei T, Tsuno NH, Nagawa H, Kitayama J. Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci. 2011;102:1257–63.
Article
CAS
Google Scholar
Kim S, Miller BJ, Stefanek ME, Miller AH. Inflammation-induced activation of the indoleamine 2,3-dioxygenase pathway: relevance to cancer-related fatigue. Cancer. 2015;121:2129–36.
Article
CAS
Google Scholar
Barreto FS, Chaves Filho AJM, de Araújo MCCR, de Moraes MO, de Moraes MEA, Maes M, et al. Tryptophan catabolites along the indoleamine 2,3-dioxygenase pathway as a biological link between depression and cancer. Behav Pharmacol. 2018;29:165–80.
Article
CAS
Google Scholar
Lanser L, Kink P, Egger EM, Willenbacher W, Fuchs D, Weiss G, et al. Inflammation-induced tryptophan breakdown is related with anemia, fatigue, and depression in cancer. Front Immunol. 2020;11:249.
Article
CAS
Google Scholar
Comai S, Bertazzo A, Brughera M, Crotti S. Tryptophan in health and disease. Adv Clin Chem. 2020;95:165–218.
Article
CAS
Google Scholar
Wee HN, Liu JJ, Ching J, Kovalik JP, Lim SC. The kynurenine pathway in acute kidney injury and chronic kidney disease. Am J Nephrol. 2021;52:771–87.
Article
CAS
Google Scholar
Soliman H, Minton E, Han S, Ismail-Khan R, Neuger A, Khambati F, et al. A phase I study of indoximod in patients with advanced malignancies. Oncotarget. 2016;7:22928–38.
Article
Google Scholar
American Society of Clinical Oncology. American society of clinical oncology policy statement: oversight of clinical research. J Clin Oncol. 2003;21:2377–86.
Article
Google Scholar
Cotte E, Passot G, Decullier E, Maurice C, Glehen O, François Y, et al. Pathologic response, when increased by longer interval, is a marker but not the cause of good prognosis in rectal cancer: 17-year follow-up of the lyon R90–01 randomized trial. Int J Radiat Oncol Biol Phys. 2016;94:544–53.
Article
Google Scholar