Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355(11):1114–23. https://doi.org/10.1056/NEJMoa060829.
Article
PubMed
CAS
Google Scholar
Sato H, Shimada M, Kurita N, Iwata T, Yoshikawa K, Higashigima J, et al. Phase I trial of neoadjuvant preoperative chemotherapy with S-1, oxaliplatin, and bevacizumab plus radiation in patients with locally advanced rectal cancer. Int J Clin Oncol. 2015;20(3):543–8. https://doi.org/10.1007/s10147-014-0733-z.
Article
PubMed
CAS
Google Scholar
Morimoto S, Shimada M, Kurita N, Sato H, Iwata T, Nishioka M, et al. Preoperative radiotherapy combined with S-1 for advanced lower rectal cancer: phase I trial. Hepato-gastroenterology. 2012;59(117):1428–32. https://doi.org/10.5754/hge11699.
Article
PubMed
CAS
Google Scholar
Higashijima J, Tokunaga T, Yoshimoto T, Eto S, Kashihara H, Takasu C, et al. A multicenter phase II trial of preoperative chemoradiotherapy with S-1 plus oxaliplatin and bevacizumab for locally advanced rectal cancer. Int J Clin Oncol. 2021;26(5):875–82. https://doi.org/10.1007/s10147-021-01868-1.
Article
PubMed
CAS
Google Scholar
Takasu C, Shimada M, Kurita N, Iwata T, Sato H, Nishioka M, et al. Survivin expression can predict the effect of chemoradiotherapy for advanced lower rectal cancer. Int J Clin Oncol. 2013;18(5):869–76. https://doi.org/10.1007/s10147-012-0470-0.
Article
PubMed
CAS
Google Scholar
Nakao T, Iwata T, Hotchi M, Yoshikawa K, Higashijima J, Nishi M, et al. Prediction of response to preoperative chemoradiotherapy and establishment of individualized therapy in advanced rectal cancer. Oncol Rep. 2015;34(4):1961–7. https://doi.org/10.3892/or.2015.4196.
Article
PubMed
CAS
Google Scholar
Ishikawa D, Nishi M, Takasu C, Kashihara H, Tokunaga T, Higashijima J, et al. The role of neutrophil-to-lymphocyte ratio on the effect of CRT for patients with rectal Cancer. In Vivo. 2020;34(2):863–8. https://doi.org/10.21873/invivo.11850.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hong YS, Kim SY, Lee JS, Nam BH, Kim KP, Kim JE, et al. Oxaliplatin-based adjuvant chemotherapy for rectal Cancer after preoperative Chemoradiotherapy (ADORE): long-term results of a randomized controlled trial. J Clin Oncol. 2019;37(33):3111–23. https://doi.org/10.1200/JCO.19.00016.
Article
PubMed
CAS
Google Scholar
Enkhbat T, Nishi M, Takasu C, Yoshikawa K, Jun H, Tokunaga T, et al. Programmed cell death ligand 1 expression is an independent prognostic factor in colorectal Cancer. Anticancer Res. 2018;38(6):3367–73. https://doi.org/10.21873/anticanres.12603.
Article
PubMed
CAS
Google Scholar
Takasu C, Nishi M, Yoshikawa K, Tokunaga T, Kashihara H, Yoshimoto T, et al. Impact of sidedness of colorectal cancer on tumor immunity. PLoS One. 2020;15(10):e0240408. https://doi.org/10.1371/journal.pone.0240408.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hecht M, Buttner-Herold M, Erlenbach-Wunsch K, Haderlein M, Croner R, Grutzmann R, et al. PD-L1 is upregulated by radiochemotherapy in rectal adenocarcinoma patients and associated with a favourable prognosis. Eur J Cancer. 2016;65:52–60. https://doi.org/10.1016/j.ejca.2016.06.015.
Article
PubMed
CAS
Google Scholar
Huemer F, Klieser E, Neureiter D, Schlintl V, Rinnerthaler G, Pages F, et al. Impact of PD-L1 scores and changes on clinical outcome in rectal Cancer patients undergoing neoadjuvant Chemoradiotherapy. J Clin Med. 2020;9(9). https://doi.org/10.3390/jcm9092775.
Lim YJ, Koh J, Kim S, Jeon SR, Chie EK, Kim K, et al. Chemoradiation-induced alteration of programmed death-ligand 1 and CD8(+) tumor-infiltrating lymphocytes identified patients with poor prognosis in rectal Cancer: a matched comparison analysis. Int J Radiat Oncol Biol Phys. 2017;99(5):1216–24. https://doi.org/10.1016/j.ijrobp.2017.07.004.
Article
PubMed
Google Scholar
Shinto E, Hase K, Hashiguchi Y, Sekizawa A, Ueno H, Shikina A, et al. CD8+ and FOXP3+ tumor-infiltrating T cells before and after chemoradiotherapy for rectal cancer. Ann Surg Oncol. 2014;21(Suppl 3):S414–21. https://doi.org/10.1245/s10434-014-3584-y.
Article
PubMed
Google Scholar
Eto S, Yoshikawa K, Nishi M, Higashijima J, Tokunaga T, Nakao T, et al. Programmed cell death protein 1 expression is an independent prognostic factor in gastric cancer after curative resection. Gastric Cancer. 2016;19(2):466–71. https://doi.org/10.1007/s10120-015-0519-7.
Article
PubMed
CAS
Google Scholar
Flies DB, Chen L. The new B7s: playing a pivotal role in tumor immunity. J Immunother. 2007;30(3):251–60. https://doi.org/10.1097/CJI.0b013e31802e085a.
Article
PubMed
CAS
Google Scholar
Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006;12(4):1144–51. https://doi.org/10.1158/1078-0432.CCR-05-1966.
Article
PubMed
CAS
Google Scholar
Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27. https://doi.org/10.1056/NEJMoa1816714.
Article
PubMed
CAS
Google Scholar
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast Cancer. N Engl J Med. 2018;379(22):2108–21. https://doi.org/10.1056/NEJMoa1809615.
Article
PubMed
CAS
Google Scholar
Burtness B, Harrington KJ, Greil R, Soulieres D, Tahara M, de Castro G Jr, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–28. https://doi.org/10.1016/S0140-6736(19)32591-7.
Article
PubMed
CAS
Google Scholar
Saigusa S, Toiyama Y, Tanaka K, Inoue Y, Mori K, Ide S, et al. Implication of programmed cell death ligand 1 expression in tumor recurrence and prognosis in rectal cancer with neoadjuvant chemoradiotherapy. Int J Clin Oncol. 2016;21(5):946–52. https://doi.org/10.1007/s10147-016-0962-4.
Article
PubMed
CAS
Google Scholar
Ball HJ, Sanchez-Perez A, Weiser S, Austin CJ, Astelbauer F, Miu J, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene. 2007;396(1):203–13. https://doi.org/10.1016/j.gene.2007.04.010.
Article
PubMed
CAS
Google Scholar
Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest. 2004;114(2):280–90. https://doi.org/10.1172/JCI21583.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18(22):6110–21. https://doi.org/10.1158/1078-0432.CCR-12-2130.
Article
PubMed
PubMed Central
CAS
Google Scholar
Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res. 2011;17(22):6985–91. https://doi.org/10.1158/1078-0432.CCR-11-1331.
Article
PubMed
CAS
Google Scholar
Stewart CC, Perez CA. Effect of irradiation on immune responses. Radiology. 1976;118(1):201–10. https://doi.org/10.1148/118.1.201.
Article
PubMed
CAS
Google Scholar
Kitayama J, Yasuda K, Kawai K, Sunami E, Nagawa H. Circulating lymphocyte number has a positive association with tumor response in neoadjuvant chemoradiotherapy for advanced rectal cancer. Radiat Oncol. 2010;5:47. https://doi.org/10.1186/1748-717X-5-47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsuchikawa T, Hirano S, Tanaka E, Matsumoto J, Kato K, Nakamura T, et al. Novel aspects of preoperative chemoradiation therapy improving anti-tumor immunity in pancreatic cancer. Cancer Sci. 2013;104(5):531–5. https://doi.org/10.1111/cas.12119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yasuda K, Nirei T, Sunami E, Nagawa H, Kitayama J. Density of CD4(+) and CD8(+) T lymphocytes in biopsy samples can be a predictor of pathological response to chemoradiotherapy (CRT) for rectal cancer. Radiat Oncol. 2011;6:49. https://doi.org/10.1186/1748-717X-6-49.
Article
PubMed
PubMed Central
Google Scholar
Han Y, Yang Y, Chen Z, Jiang Z, Gu Y, Liu Y, et al. Human hepatocellular carcinoma-infiltrating CD4(+)CD69(+)Foxp3(−) regulatory T cell suppresses T cell response via membrane-bound TGF-beta1. J Mol Med (Berl). 2014;92(5):539–50. https://doi.org/10.1007/s00109-014-1143-4.
Article
PubMed
CAS
Google Scholar
Ravishankar B, Liu H, Shinde R, Chandler P, Baban B, Tanaka M, et al. Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc Natl Acad Sci U S A. 2012;109(10):3909–14. https://doi.org/10.1073/pnas.1117736109.
Article
PubMed
PubMed Central
Google Scholar
Ravishankar B, Shinde R, Liu H, Chaudhary K, Bradley J, Lemos HP, et al. Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci U S A. 2014;111(11):4215–20. https://doi.org/10.1073/pnas.1320924111.
Article
PubMed
PubMed Central
CAS
Google Scholar