Hoeprich GJ, Sinclair AN, Shekhar S, Goode BL. Single-molecule imaging of IQGAP1 regulating actin filament dynamics. Mol Biol Cell. 2022;33(1):ar2, 1–16.
Morita R, Numata O, Nakano K, Takaine M. Cell cycle-dependent phosphorylation of IQGAP is involved in assembly and stability of the contractile ring in fission yeast. Biochem Biophys Res Commun. 2021;534:1026–32.
Article
CAS
PubMed
Google Scholar
Nouri K, Timson DJ, Ahmadian MR. New model for the interaction of IQGAP1 with CDC42 and RAC1. Small GTPases. 2020;11(1):16–22.
Article
CAS
PubMed
Google Scholar
Wei T, Lambert PF. Role of IQGAP1 in carcinogenesis. Cancers. 2021;13(16):3940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar D, Patel SA, Hassan MK, Mohapatra N, Pattanaik N, Dixit M. Reduced IQGAP2 expression promotes EMT and inhibits apoptosis by modulating the MEK-ERK and p38 signaling in breast cancer irrespective of ER status. Cell Death Dis. 2021;12(4):389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Wei Y, Li X, Zhao R, Wang X, Yang Z, et al. IQGAP1 enhances cell invasion and matrix metalloproteinase-2 expression through upregulating NF-kappaB activity in esophageal squamous cell carcinoma cells. Gene. 2022;824:146406.
Article
CAS
PubMed
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
Article
PubMed
Google Scholar
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. https://doi.org/10.1038/s41572-020-00240-3.
Article
PubMed
Google Scholar
Ishizawa T, Hasegawa K, Aoki T, Takahashi M, Inoue Y, Sano K, et al. Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma. Gastroenterology. 2008;134(7):1908–16. https://doi.org/10.1053/j.gastro.2008.02.091.
Article
PubMed
Google Scholar
Dai Q, Ain Q, Rooney M, Song F, Zipprich A. Role of IQ motif-containing GTPase-activating proteins in hepatocellular carcinoma. Front Oncol. 2022;12:920652. https://doi.org/10.3389/fonc.2022.920652.
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Qi Y, Luo J, Yang J, Xie Q, Deng C, et al. Hepatitis B virus X protein stimulates proliferation, wound closure and inhibits apoptosis of HuH-7 cells via CDC42. Int J Mol Sci. 2017;18(3):586. https://doi.org/10.3390/ijms18030586.
Article
CAS
PubMed Central
Google Scholar
Bian X, Shi D, Xing K, Zhou H, Lu L, Yu D, et al. AMD1 upregulates hepatocellular carcinoma cells stemness by FTO mediated mRNA demethylation. Clin Transl Med. 2021;11(3):e352. https://doi.org/10.1002/ctm2.352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delgado ER, Erickson HL, Tao J, Monga SP, Duncan AW, Anakk S. Scaffolding protein IQGAP1 is dispensable, but its overexpression promotes hepatocellular carcinoma via YAP1 signaling. Mol Cell Biol. 2021;41(4):e00596–20. https://doi.org/10.1128/MCB.00596-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinn NP, Garcia-Gutierrez L, Doherty C, von Kriegsheim A, Fallahi E, Sacks DB, et al. IQGAP1 is a scaffold of the Core proteins of the hippo pathway and negatively regulates the pro-apoptotic signal mediated by this pathway. Cells. 2021;10(2):478. https://doi.org/10.3390/cells10020478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zoheir KMA, Abdelhafez MA, Darwish AM, Mahrous KF. New approach about the signaling crosstalk between IQGAPs/ NF- kappaB/IL-8 and PDCD5/p53/TRAIL pathways that modulate malignant transformation in hepatocellular carcinoma. Asian Pac J Cancer Prev. 2022;23(1):271–9. https://doi.org/10.31557/APJCP.2022.23.1.271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Wen T-F, Zhang X-Y, Chen X, Shen J-Y. IQGAP1 expression in hepatocellular carcinoma predicts poor prognosis by inducing epithelial-mesenchymal transition. Transl Cancer Res. 2017;6(3):530–40. https://doi.org/10.21037/tcr.2017.05.40.
Article
CAS
Google Scholar
Xia FD, Wang ZL, Chen HX, Huang Y, Li JD, Wang ZM, et al. Differential expression of IQGAP1/2 in hepatocellular carcinoma and its relationship with clinical outcomes. Asian Pac J Cancer Prev. 2014;15(12):4951–6. https://doi.org/10.7314/apjcp.2014.15.12.4951.
Article
PubMed
Google Scholar
Vaitheesvaran B, Hartil K, Navare A, Zheng POB, Golden A, et al. Role of the tumor suppressor IQGAP2 in metabolic homeostasis: possible link between diabetes and cancer. Metabolomics. 2014;10(5):920–37. https://doi.org/10.1007/s11306-014-0639-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gnatenko DV, Xu X, Zhu W, Schmidt VA. Transcript profiling identifies iqgap2(−/−) mouse as a model for advanced human hepatocellular carcinoma. PLoS One. 2013;8(8):e71826. https://doi.org/10.1371/journal.pone.0071826.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt VA, Chiariello CS, Capilla E, Miller F, Bahou WF. Development of hepatocellular carcinoma in Iqgap2-deficient mice is IQGAP1 dependent. Mol Cell Biol. 2008;28(5):1489–502. https://doi.org/10.1128/MCB.01090-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Qin N, Zhou Q, Chen Y, Huang S, Chen B, et al. Role of IQGAP3 in metastasis and epithelial-mesenchymal transition in human hepatocellular carcinoma. J Transl Med. 2017;15(1):176. https://doi.org/10.1186/s12967-017-1275-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin M, Liu Y, Ding X, Ke Q, Shi J, Ma Z, et al. E2F1 transactivates IQGAP3 and promotes proliferation of hepatocellular carcinoma cells through IQGAP3-mediated PKC-alpha activation. Am J Cancer Res. 2019;9(2):285–99.
CAS
PubMed
PubMed Central
Google Scholar
Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. https://doi.org/10.1016/j.neo.2022.01.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. https://doi.org/10.1158/2159-8290.CD-12-0095.
Article
PubMed
Google Scholar
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. https://doi.org/10.1126/scisignal.2004088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanczky A, Gyorffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23(7):e27633. https://doi.org/10.2196/27633.
Article
PubMed
PubMed Central
Google Scholar
Wu J, Mao X, Cai T, Luo J, Wei L. KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res. 2006;34:W720–4. https://doi.org/10.1093/nar/gkl167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D12. https://doi.org/10.1093/nar/gkaa1074.
Article
CAS
PubMed
Google Scholar
Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–20. https://doi.org/10.1093/nar/gkq537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51. https://doi.org/10.1002/pro.3715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mo CF, Li J, Yang SX, Guo HJ, Liu Y, Luo XY, et al. IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma. Br J Cancer. 2020;123(7):1154–63. https://doi.org/10.1038/s41416-020-0970-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang I, Kim JA, Kim JC, Lee JH, Kim MJ, Ahn JK. Hepatitis B virus X protein promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells by regulating SOCS1. BMB Rep. 2022;55(5):220–5. https://doi.org/10.5483/BMBRep.2022.55.5.157.
Sekiba K, Otsuka M, Funato K, Miyakawa Y, Tanaka E, Seimiya T, et al. HBx-induced degradation of Smc5/6 complex impairs homologous recombination-mediated repair of damaged DNA. J Hepatol. 2022;76(1):53–62. https://doi.org/10.1016/j.jhep.2021.08.010.
Article
CAS
PubMed
Google Scholar
Chen F, Zhu HH, Zhou LF, Wu SS, Wang J, Chen Z. IQGAP1 is overexpressed in hepatocellular carcinoma and promotes cell proliferation by Akt activation. Exp Mol Med. 2010;42(7):477–83. https://doi.org/10.3858/emm.2010.42.7.049.
Article
CAS
PubMed
PubMed Central
Google Scholar
White CD, Khurana H, Gnatenko DV, Li Z, Odze RD, Sacks DB, et al. IQGAP1 and IQGAP2 are reciprocally altered in hepatocellular carcinoma. BMC Gastroenterol. 2010;10:125. https://doi.org/10.1186/1471-230X-10-125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Science. 1998;281(5378):832–5. https://doi.org/10.1126/science.281.5378.832.
Article
CAS
PubMed
Google Scholar
Yamashiro S, Abe H, Mabuchi I. IQGAP2 is required for the cadherin-mediated cell-to-cell adhesion in Xenopus laevis embryos. Dev Biol. 2007;308(2):485–93. https://doi.org/10.1016/j.ydbio.2007.06.001.
Article
CAS
PubMed
Google Scholar
Leone M, Cazorla-Vazquez S, Ferrazzi F, Wiederstein JL, Grundl M, Weinstock G, et al. IQGAP3, a YAP target, is required for proper cell-cycle progression and genome stability. Mol Cancer Res. 2021;19(10):1712–26. https://doi.org/10.1158/1541-7786.MCR-20-0639.
Article
CAS
PubMed
Google Scholar
Nojima H, Adachi M, Matsui T, Okawa K, Tsukita S, Tsukita S. IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade. Nat Cell Biol. 2008;10(8):971–8. https://doi.org/10.1038/ncb1757.
Article
CAS
PubMed
Google Scholar
Qian EN, Han SY, Ding SZ, Lv X. Expression and diagnostic value of CCT3 and IQGAP3 in hepatocellular carcinoma. Cancer Cell Int. 2016;16:55. https://doi.org/10.1186/s12935-016-0332-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosaddeghzadeh N, Ahmadian MR. The RHO family GTPases: mechanisms of regulation and signaling. Cells. 2021;10(7):1831. https://doi.org/10.3390/cells10071831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LM, Hobbie S, Galán JE. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science. 1996;274(5295):2115–8. https://doi.org/10.1126/science.274.5295.2115.
Article
CAS
PubMed
Google Scholar
Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, et al. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and rho family GTPases. Mol Cell Biol. 1996;16(9):4869–78. https://doi.org/10.1128/MCB.16.9.4869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swart-Mataraza JM, Li Z, Sacks DB. IQGAP1 is a component of Cdc42 signaling to the cytoskeleton. J Biol Chem. 2002;277(27):24753–63. https://doi.org/10.1074/jbc.M111165200.
Article
CAS
PubMed
Google Scholar
Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2(2):133–42. https://doi.org/10.1038/nrc725.
Article
PubMed
Google Scholar
Casteel DE, Turner S, Schwappacher R, Rangaswami H, Su-Yuo J, Zhuang S, et al. Rho isoform-specific interaction with IQGAP1 promotes breast cancer cell proliferation and migration. J Biol Chem. 2012;287(45):38367–78. https://doi.org/10.1074/jbc.M112.377499.
Article
CAS
PubMed
PubMed Central
Google Scholar