Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6:92. https://doi.org/10.1038/s41572-020-00224-3.
Article
PubMed
PubMed Central
Google Scholar
Stein AP, Saha S, Kraninger JL, Swick AD, Yu M, Lambert PF, Kimple RJ. Prevalence of human papillomavirus in oropharyngeal cancer: a systematic review. Cancer J. 2015;21:138–46. https://doi.org/10.1097/PPO.0000000000000115.
Article
PubMed
PubMed Central
Google Scholar
Hashibe M, Brennan P, Chuang S-C, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev. 2009;18:541–50. https://doi.org/10.1158/1055-9965.EPI-08-0347.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chang ET, Liu Z, Hildesheim A, Liu Q, Cai Y, Zhang Z, Chen G, Xie S-H, Cao S-M, Shao J-Y, et al. Active and passive smoking and risk of nasopharyngeal carcinoma: a population-based case-control study in Southern China. Am J Epidemiol. 2017;185:1272–80. https://doi.org/10.1093/aje/kwx018.
Article
PubMed
PubMed Central
Google Scholar
Whiteman DC, Wilson LF. The fractions of cancer attributable to modifiable factors: a global review. Cancer Epidemiol. 2016;44:203–21. https://doi.org/10.1016/j.canep.2016.06.013.
Article
PubMed
Google Scholar
Kaidar-Person O, Gil Z, Billan S. Precision medicine in head and neck cancer. Drug Resist Updat. 2018;40:13–6. https://doi.org/10.1016/j.drup.2018.09.001.
Article
PubMed
Google Scholar
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144:1941–53. https://doi.org/10.1002/ijc.31937.
Article
PubMed
CAS
Google Scholar
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol. 2018;16:338–49. https://doi.org/10.2174/1570159X15666170912110450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Russo P, Cardinale A, Margaritora S, Cesario A. Nicotinic receptor and tobacco-related cancer. Life Sci. 2012;91:1087–92. https://doi.org/10.1016/j.lfs.2012.05.003.
Article
PubMed
CAS
Google Scholar
Millar NS, Gotti C. Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology. 2009;56:237–46. https://doi.org/10.1016/j.neuropharm.2008.07.041.
Article
PubMed
CAS
Google Scholar
Liu W, Li MD. Insights into nicotinic receptor signaling in nicotine addiction: implications for prevention and treatment. Curr Neuropharmacol. 2018;16:350–70. https://doi.org/10.2174/1570159X15666170801103009.
Article
PubMed
PubMed Central
CAS
Google Scholar
Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-analyzed tumors. Cell. 2018;173:530. https://doi.org/10.1016/j.cell.2018.03.059.
Article
PubMed
CAS
Google Scholar
von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61. https://doi.org/10.1093/nar/gkg034.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–51. https://doi.org/10.1093/nar/gkaa970.
Article
PubMed
CAS
Google Scholar
Zhou L, Yu Y, Wen R, Zheng K, Jiang S, Zhu X, Sui J, Gong H, Lou Z, Hao L, et al. Development and validation of an 8-gene signature to improve survival prediction of colorectal cancer. Front Oncol. 2022;12:863094. https://doi.org/10.3389/fonc.2022.863094.
Article
PubMed
PubMed Central
Google Scholar
Kim Y, Kang JW, Kang J, Kwon EJ, Ha M, Kim YK, Lee H, Rhee J-K, Kim YH. Novel deep learning-based survival prediction for oral cancer by analyzing tumor-infiltrating lymphocyte profiles through CIBERSORT. Oncoimmunology. 2021;10:1904573. https://doi.org/10.1080/2162402X.2021.1904573.
Article
PubMed
PubMed Central
Google Scholar
Xu Q, Chen S, Hu Y, Huang W. Landscape of immune microenvironment under immune cell infiltration pattern in breast cancer. Front Immunol. 2021;12:711433. https://doi.org/10.3389/fimmu.2021.711433.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955-961. https://doi.org/10.1093/nar/gks1111.
Article
PubMed
CAS
Google Scholar
Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26:1364–70. https://doi.org/10.1200/JCO.2007.12.9791.
Article
PubMed
Google Scholar
Huang Q, Shen Y-J, Hsueh C-Y, Guo Y, Zhang Y-F, Li J-Y, Zhou L. miR-17-5p drives G2/M-phase accumulation by directly targeting CCNG2 and is related to recurrence of head and neck squamous cell carcinoma. BMC Cancer. 2021;21:1074. https://doi.org/10.1186/s12885-021-08812-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23:e27633. https://doi.org/10.2196/27633.
Article
PubMed
PubMed Central
Google Scholar
Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10:277–88. https://doi.org/10.2217/epi-2017-0118.
Article
PubMed
CAS
Google Scholar
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14. https://doi.org/10.1093/nar/gkaa407.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalkhoran S, Glantz SA. E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir Med. 2016;4:116–28. https://doi.org/10.1016/S2213-2600(15)00521-4.
Article
PubMed
PubMed Central
Google Scholar
Hecht SS, Hatsukami DK. Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nat Rev Cancer. 2022;22:143–55. https://doi.org/10.1038/s41568-021-00423-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Picciotto MR, Kenny PJ. Mechanisms of nicotine addiction. Cold Spring Harb Perspect Med. 2021;11:a039610. https://doi.org/10.1101/cshperspect.a039610.
Article
PubMed
CAS
Google Scholar
Schaal CM, Bora-Singhal N, Kumar DM, Chellappan SP. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer. 2018;17:149. https://doi.org/10.1186/s12943-018-0901-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen X, Jia Y, Zhang Y, Zhou D, Sun H, Ma X. α5-nAChR contributes to epithelial-mesenchymal transition and metastasis by regulating Jab1/Csn5 signalling in lung cancer. J Cell Mol Med. 2020;24:2497–506. https://doi.org/10.1111/jcmm.14941.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimizu R, Ibaragi S, Eguchi T, Kuwajima D, Kodama S, Nishioka T, Okui T, Obata K, Takabatake K, Kawai H, et al. Nicotine promotes lymph node metastasis and cetuximab resistance in head and neck squamous cell carcinoma. Int J Oncol. 2019;54:283–94. https://doi.org/10.3892/ijo.2018.4631.
Article
PubMed
CAS
Google Scholar
Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137:22–54. https://doi.org/10.1016/j.pharmthera.2012.08.012.
Article
PubMed
CAS
Google Scholar
Zhang Q, Jia Y, Pan P, Zhang X, Jia Y, Zhu P, Chen X, Jiao Y, Kang G, Zhang L, et al. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer. Carcinogenesis. 2022:bgac003. https://doi.org/10.1093/carcin/bgac003
Qi J-C, Xue W-Y, Zhang Y-P, Qu C-B, Lu B-S, Yin Y-W, Liu K-L, Wang D-B, Li W, Zhao Z-M. Cholinergic α5 nicotinic receptor is involved in the proliferation and invasion of human prostate cancer cells. Oncol Rep. 2020;43:159–68. https://doi.org/10.3892/or.2019.7411.
Article
PubMed
CAS
Google Scholar
Shehwana H, Keskus AG, Ozdemir SE, Acikgöz AA, Biyik-Sit R, Cagnan I, Gunes D, Jahja E, Cingir-Koker S, Olmezer G, et al. CHRNA5 belongs to the secondary estrogen signaling network exhibiting prognostic significance in breast cancer. Cell Oncol (Dordr). 2021;44:453–72. https://doi.org/10.1007/s13402-020-00581-x.
Article
CAS
Google Scholar
Fu Y, Ci H, Du W, Dong Q, Jia H. CHRNA5 Contributes to Hepatocellular Carcinoma Progression by Regulating YAP Activity. Pharmaceutics. 2022;14:275. https://doi.org/10.3390/pharmaceutics14020275.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S. Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994;79:705–15. https://doi.org/10.1016/0092-8674(94)90555-x.
Article
PubMed
CAS
Google Scholar
Hone AJ, Servent D, McIntosh JM. α9-containing nicotinic acetylcholine receptors and the modulation of pain. Br J Pharmacol. 2018;175:1915–27. https://doi.org/10.1111/bph.13931.
Article
PubMed
CAS
Google Scholar
Wang Y, Zhang Y, Gu C, Bao W, Bao Y. Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9) polymorphisms are associated with NSCLC risk in a Chinese population. Med Oncol. 2014;31:932. https://doi.org/10.1007/s12032-014-0932-5.
Article
PubMed
CAS
Google Scholar
Hsieh Y-C, Lee C-H, Tu S-H, Wu C-H, Hung C-S, Hsieh M-C, Chuang C-W, Ho Y-S, Chiou H-Y. CHRNA9 polymorphisms and smoking exposure synergize to increase the risk of breast cancer in Taiwan. Carcinogenesis. 2014;35:2520–5. https://doi.org/10.1093/carcin/bgu179.
Article
PubMed
CAS
Google Scholar
Zhao Z, Peng F, Zhou Y, Hu G, He H, He F, Zou W, Zhao Z, Li B, Ran P. Exon sequencing identifies a novel CHRNA3-CHRNA5-CHRNB4 variant that increases the risk for chronic obstructive pulmonary disease. Respirology. 2015;20:790–8. https://doi.org/10.1111/resp.12539.
Article
PubMed
Google Scholar
Lee S-H, Ahn W-Y, Seweryn M, Sadee W. Combined genetic influence of the nicotinic receptor gene cluster CHRNA5/A3/B4 on nicotine dependence. BMC Genomics. 2018;19:826. https://doi.org/10.1186/s12864-018-5219-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barrie ES, Hartmann K, Lee S-H, Frater JT, Seweryn M, Wang D, Sadee W. The CHRNA5/CHRNA3/CHRNB4 nicotinic receptor regulome: genomic architecture, regulatory variants, and clinical associations. Hum Mutat. 2017;38:112–9. https://doi.org/10.1002/humu.23135.
Article
PubMed
CAS
Google Scholar
Wen L, Jiang K, Yuan W, Cui W, Li MD. Contribution of Variants in CHRNA5/A3/B4 gene cluster on chromosome 15 to tobacco smoking: from genetic association to mechanism. Mol Neurobiol. 2016;53:472–84. https://doi.org/10.1007/s12035-014-8997-x.
Article
PubMed
CAS
Google Scholar
Halldén S, Sjögren M, Hedblad B, Engström G, Hamrefors V, Manjer J, Melander O. Gene variance in the nicotinic receptor cluster (CHRNA5-CHRNA3-CHRNB4) predicts death from cardiopulmonary disease and cancer in smokers. J Intern Med. 2016;279:388–98. https://doi.org/10.1111/joim.12454.
Article
PubMed
CAS
Google Scholar
Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18:269–82. https://doi.org/10.1038/nrc.2018.11.
Article
PubMed
CAS
Google Scholar
Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: cellular and molecular mechanisms. J Dent Res. 2012;91:142–9. https://doi.org/10.1177/0022034511421200.
Article
PubMed
PubMed Central
CAS
Google Scholar