Fox CP, Civallero M, Ko YH, Manni M, Skrypets T, Pileri S, Kim SJ, Cabrera ME, Shustov AR, Chiattone CS, et al. Survival outcomes of patients with extranodal natural-killer T-cell lymphoma: a prospective cohort study from the international T-cell Project. Lancet Haematol. 2020;7(4):e284–94. https://doi.org/10.1016/S2352-3026(19)30283-2.
Article
PubMed
Google Scholar
Tse E, Kwong YL. The diagnosis and management of NK/T-cell lymphomas. J Hematol Oncol. 2017;10(1):85. https://doi.org/10.1186/s13045-017-0452-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue D, Chew GL, Liu B, Michel BC, Pangallo J, D’Avino AR, Hitchman T, North K, Lee SC, Bitner L, et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature. 2019;574(7778):432–6. https://doi.org/10.1038/s41586-019-1646-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, Smith PG, Buonamici S, Yu L. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Rep. 2018;23(1):282-296.e284. https://doi.org/10.1016/j.celrep.2018.01.088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shuai S, Suzuki H, Diaz-Navarro A, Nadeu F, Kumar SA, Gutierrez-Fernandez A, Delgado J, Pinyol M, Lopez-Otin C, Puente XS, et al. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature. 2019;574(7780):712–6. https://doi.org/10.1038/s41586-019-1651-z.
Article
CAS
PubMed
Google Scholar
Fu XD. The superfamily of arginine/serine-rich splicing factors. RNA. 1995;1(7):663–80.
CAS
PubMed
PubMed Central
Google Scholar
Manley JL, Krainer AR. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev. 2010;24(11):1073–4. https://doi.org/10.1101/gad.1934910.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gui JF, Lane WS, Fu XD. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature. 1994;369(6482):678–82. https://doi.org/10.1038/369678a0.
Article
CAS
PubMed
Google Scholar
Zhou Z, Fu XD. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma. 2013;122(3):191–207. https://doi.org/10.1007/s00412-013-0407-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding JH, Zhong XY, Hagopian JC, Cruz MM, Ghosh G, Feramisco J, Adams JA, Fu XD. Regulated cellular partitioning of SR protein-specific kinases in mammalian cells. Mol Biol Cell. 2006;17(2):876–85. https://doi.org/10.1091/mbc.e05-10-0963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikas IP, Themistocleous SC, Paschou SA, Tsamis KI, Ryu HS. Serine-Arginine Protein Kinase 1 (SRPK1) as a Prognostic Factor and Potential Therapeutic Target in Cancer: Current Evidence and Future Perspectives. Cells. 2019;9 (1): https://doi.org/10.3390/cells9010019
Dong Z, Chang X, Xie L, Wang Y, Hou Y. Increased expression of SRPK1 (serine/arginine-rich protein-specific kinase 1) is associated with progression and unfavorable prognosis in cervical squamous cell carcinoma. Bioengineered. 2022;13(3):6100–12. https://doi.org/10.1080/21655979.2022.2034705.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Roosmalen W, Le Devedec SE, Golani O, Smid M, Pulyakhina I, Timmermans AM, Look MP, Zi D, Pont C, de Graauw M, et al. Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant. J Clin Invest. 2015;125(4):1648–64. https://doi.org/10.1172/JCI74440.
Article
PubMed
PubMed Central
Google Scholar
Yao Y, Li Q, Wang H. MiR-216b suppresses colorectal cancer proliferation, migration, and invasion by targeting SRPK1. Onco Targets Ther. 2018;11(1671–1681. https://doi.org/10.2147/OTT.S161835
Li Y, Yu S, Wang X, Ye X, He B, Quan M, Gao Y. SRPK1 facilitates tumor cell growth via modulating the small nucleolar RNA expression in gastric cancer. J Cell Physiol. 2019;234(8):13582–91. https://doi.org/10.1002/jcp.28036.
Article
CAS
PubMed
Google Scholar
Wang F, Zhou J, Xie X, Hu J, Chen L, Hu Q, Guo H, Yu C. Involvement of SRPK1 in cisplatin resistance related to long non-coding RNA UCA1 in human ovarian cancer cells. Neoplasma. 2015. https://doi.org/10.4149/neo_2015_051.
Article
PubMed
Google Scholar
Obeng EA, Stewart C, Abdel-Wahab O. Altered RNA Processing in Cancer Pathogenesis and Therapy. Cancer Discov. 2019;9(11):1493–510. https://doi.org/10.1158/2159-8290.CD-19-0399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hishizawa M, Imada K, Sakai T, Ueda M, Hori T, Uchiyama T. Serological identification of adult T-cell leukaemia-associated antigens. Br J Haematol. 2005;130(3):382–90. https://doi.org/10.1111/j.1365-2141.2005.05619.x.
Article
CAS
PubMed
Google Scholar
Tzelepis K, De Braekeleer E, Aspris D, Barbieri I, Vijayabaskar MS, Liu WH, Gozdecka M, Metzakopian E, Toop HD, Dudek M, et al. SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nat Commun. 2018;9(1):5378. https://doi.org/10.1038/s41467-018-07620-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, et al. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Rep. 2016;17(4):1193–205. https://doi.org/10.1016/j.celrep.2016.09.079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. https://doi.org/10.1182/blood-2016-01-643569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schenk PW, Boersma AW, Brandsma JA, den Dulk H, Burger H, Stoter G, Brouwer J, Nooter K. SKY1 is involved in cisplatin-induced cell kill in Saccharomyces cerevisiae, and inactivation of its human homologue, SRPK1, induces cisplatin resistance in a human ovarian carcinoma cell line. Cancer Res. 2001;61(19):6982–6.
CAS
PubMed
Google Scholar
Schenk PW, Stoop H, Bokemeyer C, Mayer F, Stoter G, Oosterhuis JW, Wiemer E, Looijenga LH, Nooter K. Resistance to platinum-containing chemotherapy in testicular germ cell tumors is associated with downregulation of the protein kinase SRPK1. Neoplasia. 2004;6(4):297–301. https://doi.org/10.1593/neo.03406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayes GM, Carrigan PE, Beck AM, Miller LJ. Targeting the RNA splicing machinery as a novel treatment strategy for pancreatic carcinoma. Cancer Res. 2006;66(7):3819–27. https://doi.org/10.1158/0008-5472.CAN-05-4065.
Article
CAS
PubMed
Google Scholar
Hayes GM, Carrigan PE, Miller LJ. Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colonic, and pancreatic carcinomas. Cancer Res. 2007;67(5):2072–80. https://doi.org/10.1158/0008-5472.Can-06-2969.
Article
CAS
PubMed
Google Scholar
Sigala I, Tsamis KI, Gousia A, Alexiou G, Voulgaris S, Giannakouros T, Kyritsis AP, Nikolakaki E. Expression of SRPK1 in gliomas and its role in glioma cell lines viability. Tumour Biol. 2016;37(7):8699–707. https://doi.org/10.1007/s13277-015-4738-7.
Article
CAS
PubMed
Google Scholar
Salesse S, Dylla SJ, Verfaillie CM. p210BCR/ABL-induced alteration of pre-mRNA splicing in primary human CD34+ hematopoietic progenitor cells. Leukemia. 2004;18(4):727–33. https://doi.org/10.1038/sj.leu.2403310.
Article
CAS
PubMed
Google Scholar
Wang H, Ge W, Jiang W, Li D, Ju X. SRPK1siRNA suppresses K562 cell growth and induces apoptosis via the PARPcaspase3 pathway. Mol Med Rep. 2018;17(1):2070–6. https://doi.org/10.3892/mmr.2017.8032.
Article
CAS
PubMed
Google Scholar
Siqueira RP, Caetano MMM, de Souza LA, Dos Passos PMS, Simaroli NB, Barros MVA, de Souza APM, de Oliveira LL, Silva-Junior A, Fietto JLR et al. Combined SRPK and AKT pharmacological inhibition is synergistic in T-cell acute lymphoblastic leukemia cells. Toxicol In Vitro. 2020;65 (104777. https://doi.org/10.1016/j.tiv.2020.104777
Wang C, Zhou Z, Subhramanyam CS, Cao Q, Heng ZSL, Liu W, Fu X, Hu Q. SRPK1 acetylation modulates alternative splicing to regulate cisplatin resistance in breast cancer cells. Commun Biol. 2020;3(1):268. https://doi.org/10.1038/s42003-020-0983-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bullock N, Oltean S. The many faces of SRPK1. J Pathol. 2017;241(4):437–40. https://doi.org/10.1002/path.4846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu XX, Zhu MY, Wang JR, Li H, Hu P, Qing YJ, Wang XY, Wang HZ, Wang ZY, Xu JY, et al. LW-213 induces cell apoptosis in human cutaneous T-cell lymphomas by activating PERK-eIF2alpha-ATF4-CHOP axis. Acta Pharmacol Sin. 2021;42(2):290–300. https://doi.org/10.1038/s41401-020-0466-7.
Article
CAS
PubMed
Google Scholar
Liu H, Xiong C, Liu J, Sun T, Ren Z, Li Y, Geng J, Li X. Aspirin exerts anti-tumor effect through inhibiting Blimp1 and activating ATF4/CHOP pathway in multiple myeloma. Biomed Pharmacother. 2020;125(110005. https://doi.org/10.1016/j.biopha.2020.110005
Peng W, Chen BA. Gambogic acid induces cell apoptosis through endoplasmic reticulum stress triggered inhibition of Akt signaling pathways in extranodal NK/T-cell lymphoma cells. Chin J Nat Med. 2018;16(9):693–9. https://doi.org/10.1016/s1875-5364(18)30109-2.
Article
CAS
PubMed
Google Scholar
Huang D, Song TL, Nairismagi ML, Laurensia Y, Pang WL, Zhe DCM, Wong EKY, Wijaya GG, Tan J, Tan SH, et al. Evaluation of the PIK3 pathway in peripheral T-cell lymphoma and NK/T-cell lymphoma. Br J Haematol. 2020;189(4):731–44. https://doi.org/10.1111/bjh.16435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Dan HC, Park S, Yang L, Liu Q, Kaneko S, Ning J, He L, Yang H, Sun M, et al. AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci. 2005;10:975–87. https://doi.org/10.2741/1592.
Article
CAS
PubMed
Google Scholar
Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004;23(16):2934–49. https://doi.org/10.1038/sj.onc.1207515.
Article
CAS
PubMed
Google Scholar
Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO, Ratovitski E, Sidransky D. DeltaNp63alpha confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res. 2011;71(3):1167–76. https://doi.org/10.1158/0008-5472.Can-10-1481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang C, Luo H, Luo D, Yang H, Zhou X. Src homology phosphotyrosyl phosphatase 2 mediates cisplatin-related drug resistance by inhibiting apoptosis and activating the Ras/PI3K/Akt1/survivin pathway in lung cancer cells. Oncol Rep. 2018;39(2):611–8. https://doi.org/10.3892/or.2017.6109.
Article
CAS
PubMed
Google Scholar
Zhao L, Zhang W, Zhang F. Poncirin downregulates ATP-binding cassette transporters to enhance cisplatin sensitivity in cisplatin-resistant osteosarcoma cells. Phytother Res. 2021;35(1):278–88. https://doi.org/10.1002/ptr.6798.
Article
CAS
PubMed
Google Scholar
Dukaew N, Chairatvit K, Pitchakarn P, Imsumran A, Karinchai J, Tuntiwechapikul W, Wongnoppavich A. Inactivation of AKT/NFkappaB signaling by eurycomalactone decreases human NSCLC cell viability and improves the chemosensitivity to cisplatin. Oncol Rep. 2020;44(4):1441–54. https://doi.org/10.3892/or.2020.7710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Wang Y. Deoxyshikonin inhibits cisplatin resistance of non-small-cell lung cancer cells by repressing Akt-mediated ABCB1 expression and function. J Biochem Mol Toxicol. 2020;34(10):e22560. https://doi.org/10.1002/jbt.22560.
Article
CAS
PubMed
Google Scholar