Steuer CE, El-Deiry M, Parks JR, Higgins KA, Saba NF. An update on larynx cancer. CA Cancer J Clin. 2017;67(1):31–50.
Article
Google Scholar
Rothenberg SM, Ellisen LW. The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest. 2012;122(6):1951–7.
Article
CAS
Google Scholar
Chu EA, Kim YJ. Laryngeal cancer: diagnosis and preoperative work-up. Otolaryngol Clin North Am. 2008;41(4):673–95.
Article
Google Scholar
Giotakis AI, Lazaris AC, Kataki A, Kontos CK, Giotakis EI. Positive BCL2L12 expression predicts favorable prognosis in patients with laryngeal squamous cell carcinoma. Cancer Biomark. 2019;25(2):141–9.
Article
CAS
Google Scholar
Cui X, Yu T, Shang J, Xiao D, Wang X. Long Non-Coding RNA CDKN2B-AS1 Facilitates Laryngeal Squamous Cell Cancer Through Regulating miR-497/CDK6 Pathway. Onco Targets Ther. 2019;12:8853–62.
Article
CAS
Google Scholar
Zhang D, Li G, Chen X, Jing Q, Liu C, Lu S, Huang D, Wang Y, Tan P, Chen J, et al. Wnt3a protein overexpression predicts worse overall survival in laryngeal squamous cell carcinoma. J Cancer. 2019;10(19):4633–8.
Article
CAS
Google Scholar
Yuan H, Jiang H, Wang Y, Dong Y. Increased expression of lncRNA FTH1P3 predicts a poor prognosis and promotes aggressive phenotypes of laryngeal squamous cell carcinoma. Biosci Rep. 2019;39(6):BSR20181644.
Article
CAS
Google Scholar
Nan Y, Chang R, Jiang H, Yang S, Jin F, Xie Y. Downregulation of P38 phosphorylation correlates with low-grade differentiation and proliferation of lung squamous cell carcinoma. Am J Transl Res. 2017;9(4):1922–33.
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559.
Article
Google Scholar
Qin S, Long X, Zhao Q, Zhao W. Co-Expression Network Analysis Identified Genes Associated with Cancer Stem Cell Characteristics in Lung Squamous Cell Carcinoma. Cancer Invest. 2020;38(1):13–22.
Article
CAS
Google Scholar
Li XT. Identification of key genes for laryngeal squamous cell carcinoma using weighted co-expression network analysis. Oncol Lett. 2016;11(5):3327–31.
Article
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
Article
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Article
CAS
Google Scholar
Lin H, Zelterman D. Modeling Survival Data: Extending the Cox Model. Technometrics. 2002;44(1):85–6.
Article
Google Scholar
Zheng MJ, Li X, Hu YX, Dong H, Gou R, Nie X, Liu Q, Ying-Ying H, Liu JJ, Lin B. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. J Cell Physiol. 2019;234(7):11023–36.
Article
CAS
Google Scholar
Fang J, Ding Z. SNAI1 is a prognostic biomarker and correlated with immune infiltrates in gastrointestinal cancers. Aging (Albany NY). 2020;12(17):17167–208.
Article
CAS
Google Scholar
Liu H, Cui J, Zhang Y, Niu M, Xue X, Yin H, Tang Y, Dai L, Dai F, Guo Y, et al. Mass spectrometry-based proteomic analysis of FSCN1-interacting proteins in laryngeal squamous cell carcinoma cells. IUBMB Life. 2019;71(11):1771–84.
Article
CAS
Google Scholar
Iguchi T, Miyauchi E, Watanabe S, Masai H, Miyatake S. A BTB-ZF protein, ZNF131, is required for early B cell development. Biochem Biophys Res Commun. 2018;501(2):570–5.
Article
CAS
Google Scholar
Kang N, Cao S, Jiang B, Zhang Q, Donkor PO, Zhu Y, Qiu F, Gao X. Cetuximab enhances oridonin-induced apoptosis through mitochondrial pathway and endoplasmic reticulum stress in laryngeal squamous cell carcinoma cells. Toxicol In Vitro. 2020;67:104885.
Article
CAS
Google Scholar
Ji Y, Li L, Tao Q, Zhang X, Luan J, Zhao S, Liu H, Ju D. Deprivation of asparagine triggers cytoprotective autophagy in laryngeal squamous cell carcinoma. Appl Microbiol Biotechnol. 2017;101(12):4951–61.
Article
CAS
Google Scholar
Sun S, Gong C, Yuan K. LncRNA UCA1 promotes cell proliferation, invasion and migration of laryngeal squamous cell carcinoma cells by activating Wnt/beta-catenin signaling pathway. Exp Ther Med. 2019;17(2):1182–9.
CAS
PubMed
Google Scholar
Cui X, Fang N, Cui Y, Xiao D, Wang X. Long non-coding RNA NEF inhibits proliferation and promotes apoptosis of laryngeal squamous cell carcinoma cells by inhibiting Wnt/beta-catenin signaling. Oncol Lett. 2019;17(6):4928–34.
CAS
PubMed
PubMed Central
Google Scholar
Ji Y, Wang Q, Zhao Q, Zhao S, Li L, Sun G, Ye L. Autophagy suppression enhances DNA damage and cell death upon treatment with PARP inhibitor Niraparib in laryngeal squamous cell carcinoma. Appl Microbiol Biotechnol. 2019;103(23–24):9557–68.
Article
CAS
Google Scholar
Gao W, Guo H, Niu M, Zheng X, Zhang Y, Xue X, Bo Y, Guan X, Li Z, Guo Y, et al. circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway. Mol Cancer. 2020;19(1):166.
Article
CAS
Google Scholar
Pu X, Wang J, Li W, Fan W, Wang L, Mao Y, Yang S, Liu S, Xu J, Lv Z, et al. COPB2 promotes cell proliferation and tumorigenesis through up-regulating YAP1 expression in lung adenocarcinoma cells. Biomed Pharmacother. 2018;103:373–80.
Article
CAS
Google Scholar
Wang Y, Xie G, Li M, Du J, Wang M. COPB2 gene silencing inhibits colorectal cancer cell proliferation and induces apoptosis via the JNK/c-Jun signaling pathway. Plos One. 2020;15(11):e0240106.
Article
CAS
Google Scholar
Zhou Y, Wang X, Huang X, Li XD, Cheng K, Yu H, Zhou YJ, Lv P, Jiang XB. High expression of COPB2 predicts adverse outcomes: A potential therapeutic target for glioma. CNS Neurosci Ther. 2020;26(3):309–18.
Article
CAS
Google Scholar
Kim HT, Yin W, Nakamichi Y, Panza P, Grohmann B, Buettner C, Guenther S, Ruppert C, Kobayashi Y, Guenther A, et al. WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A. 2019;116(51):25697–706.
Article
CAS
Google Scholar
Fu Y, Chen Y, Huang J, Cai Z, Wang Y. RYK, a receptor of noncanonical Wnt ligand Wnt5a, is positively correlated with gastric cancer tumorigenesis and potential of liver metastasis. Am J Physiol Gastrointest Liver Physiol. 2020;318(2):G352–60.
Article
CAS
Google Scholar
Skaria T, Schoedon G. Inflammatory Wnt5A signalling pathways affecting barrier function of human vascular endothelial cells. J Inflamm (Lond). 2017;14:15.
Article
Google Scholar
Fei Y, Guo P, Wang F, Li H, Lei Y, Li W, Xun X, Lu F. Identification of miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Mol Med Rep. 2017;16(4):4179–86.
Article
CAS
Google Scholar
Kumawat K, Menzen MH, Bos IS, Baarsma HA, Borger P, Roth M, Tamm M, Halayko AJ, Simoons M, Prins A, et al. Noncanonical WNT-5A signaling regulates TGF-beta-induced extracellular matrix production by airway smooth muscle cells. FASEB J. 2013;27(4):1631–43.
Article
CAS
Google Scholar