Hui L, Chen Y. Tumour microenvironment: Sanctuary of the devil. Cancer Lett. 2015;368(1):7–13.
Article
CAS
PubMed
Google Scholar
Hinshaw DC, Shevde LA. The Tumour Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019;79(18):4557–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. NAT REV IMMUNOL. 2015;15(11):669–82.
Article
CAS
PubMed
Google Scholar
Ribatti D, Crivellato E. Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta. 2012;1822(1):2–8.
Article
CAS
PubMed
Google Scholar
Komi D, Redegeld FA. Role of Mast Cells in Shaping the Tumour Microenvironment. Clin Rev Allergy Immunol. 2020;58(3):313–25.
Article
CAS
PubMed
Google Scholar
Aponte-Lopez A, Munoz-Cruz S. Mast Cells in the Tumour Microenvironment. Adv Exp Med Biol. 2020;1273:159–73.
Article
CAS
PubMed
Google Scholar
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.
Article
PubMed
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.
Article
PubMed
Google Scholar
McGranahan N, Swanton C. Clonal Heterogeneity and Tumour Evolution: Past, Present, and the Future. CELL. 2017;168(4):613–28.
Article
CAS
PubMed
Google Scholar
Mandal R, Senbabaoglu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016;1(17):e89829.
Article
PubMed
PubMed Central
Google Scholar
Perri F, Ionna F, Longo F, Della VSG, De Angelis C, Ottaiano A, et al. Immune Response Against Head and Neck Cancer: Biological Mechanisms and Implication on Therapy. Transl Oncol. 2020;13(2):262–74.
Article
PubMed
Google Scholar
Ferris RL, Blumenschein GJ, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016;375(19):1856–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, et al. Pembrolizumab for Platinum- and Cetuximab-Refractory Head and Neck Cancer: Results From a Single-Arm, Phase II Study. J CLIN ONCOL. 2017;35(14):1542–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anuradha A, Kiran KNB, Vijay SG, Devi RS, Puneet HK. Incidence of mast cells in oral squamous cell carcinoma: a short study. J ONCOL. 2014;2014:614291.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attramadal CG, Kumar S, Gao J, Boysen ME, Halstensen TS, Bryne M. Low Mast Cell Density Predicts Poor Prognosis in Oral Squamous Cell Carcinoma and Reduces Survival in Head and Neck Squamous Cell Carcinoma. Anticancer Res. 2016;36(10):5499–506.
Article
CAS
PubMed
Google Scholar
Ciurea R, Margaritescu C, Simionescu C, Stepan A, Ciurea M. VEGF and his R1 and R2 receptors expression in mast cells of oral squamous cells carcinomas and their involvement in tumoural angiogenesis. Romanian J Morphol Embryol. 2011;52(4):1227–32.
Google Scholar
Olsen TK, Baryawno N. Introduction to Single-Cell RNA Sequencing. Curr Protoc Mol Biol. 2018;122(1):e57.
Article
PubMed
CAS
Google Scholar
Wolfien M, David R, Galow AM: Single-Cell RNA Sequencing Procedures and Data Analysis. 2021.
Cillo AR, Kurten C, Tabib T, Qi Z, Onkar S, Wang T, et al. Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. IMMUNITY. 2020;52(1):183–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lall S, Sinha D, Bandyopadhyay S, Sengupta D. Structure-Aware Principal Component Analysis for Single-Cell RNA-seq Data. J Comput Biol. 2018.
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 2019;47(D1):D721–8.
Article
CAS
PubMed
Google Scholar
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–95.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumours associated with local immune cytolytic activity. CELL. 2015;160(1-2):48–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017;18(1):248–62.
Article
CAS
PubMed
Google Scholar
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218.
Article
CAS
PubMed
Google Scholar
Trujillo JA, Sweis RF, Bao R, Luke JJ. T Cell-Inflamed versus Non-T Cell-Inflamed Tumours: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection. CANCER IMMUNOL RES. 2018;6(9):990–1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold Tumours: A Therapeutic Challenge for Immunotherapy. Front Immunol. 2019;10:168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Economopoulou P, Agelaki S, Perisanidis C, Giotakis EI, Psyrri A. The promise of immunotherapy in head and neck squamous cell carcinoma. Ann Oncol. 2016;27(9):1675–85.
Article
CAS
PubMed
Google Scholar
Lv YP, Peng LS, Wang QH, Chen N, Teng YS, Wang TT, et al. Degranulation of mast cells induced by gastric cancer-derived adrenomedullin prompts gastric cancer progression. Cell Death Dis. 2018;9(10):1034.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lv Y, Zhao Y, Wang X, Chen N, Mao F, Teng Y, et al. Increased intratumoural mast cells foster immune suppression and gastric cancer progression through TNF-alpha-PD-L1 pathway. J IMMUNOTHER CANCER. 2019;7(1):54.
Article
PubMed
PubMed Central
Google Scholar
Kabiraj A, Jaiswal R, Singh A, Gupta J, Singh A, Samadi FM. Immunohistochemical evaluation of tumour angiogenesis and the role of mast cells in oral squamous cell carcinoma. J Cancer Res Ther. 2018;14(3):495–502.
Article
CAS
PubMed
Google Scholar
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, et al. Are Mast Cells MASTers in Cancer? Front Immunol. 2017;8:424.
PubMed
PubMed Central
Google Scholar
Gulubova M, Vlaykova T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol. 2009;24(7):1265–75.
Article
PubMed
Google Scholar
Micu GV, Staniceanu F, Sticlaru LC, Popp CG, Bastian AE, Gramada E, et al. Correlations Between the Density of Tryptase Positive Mast Cells (DMCT) and that of New Blood Vessels (CD105+) in Patients with Gastric Cancer. Rom J Intern Med. 2016;54(2):113–20.
PubMed
Google Scholar
Cai SW, Yang SZ, Gao J, Pan K, Chen JY, Wang YL, et al. Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. SURGERY. 2011;149(4):576–84.
Article
PubMed
Google Scholar
Kaesler S, Wolbing F, Kempf WE, Skabytska Y, Koberle M, Volz T, et al. Targeting tumour-resident mast cells for effective anti-melanoma immune responses. JCI. Insight. 2019;4(19).
Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol. 2002;158(4):659–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drizyte-Miller K, Chen J, Cao H, Schott MB, McNiven MA. The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling. J Cell Sci. 2020;133(11).
Wang L, Wang QT, Liu YP, Dong QQ, Hu HJ, Miao Z, et al. ATM Signaling Pathway Is Implicated in the SMYD3-mediated Proliferation and Migration of Gastric Cancer Cells. J GASTRIC CANCER. 2017;17(4):295–305.
Article
PubMed
PubMed Central
Google Scholar
Zou JN, Wang SZ, Yang JS, Luo XG, Xie JH, Xi T. Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF. Cancer Lett. 2009;280(1):78–85.
Article
CAS
PubMed
Google Scholar
Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, et al. SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res. 2019;47(3):1278–93.
Article
CAS
PubMed
Google Scholar
Zhang XD, Huang GW, Xie YH, He JZ, Guo JC, Xu XE, et al. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res. 2018;46(4):1793–809.
Article
CAS
PubMed
Google Scholar
Wang G, Huang Y, Yang F, Tian X, Wang K, Liu L, et al. High expression of SMYD3 indicates poor survival outcome and promotes tumour progression through an IGF-1R/AKT/E2F-1 positive feedback loop in bladder cancer. Aging (Albany NY). 2020;12(3):2030–48.
Article
CAS
Google Scholar
Bernard BJ, Nigam N, Burkitt K, Saloura V. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenetics. 2021;13(1):45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu CC, Li H, Xiao Y, Deng WW, Sun ZJ. Expression levels of SIX1, ME2, and AP2M1 in adenoid cystic carcinoma and mucoepidermoid carcinoma. Oral Dis. 2020;26(8):1687–95.
Article
PubMed
Google Scholar
Cho SH, Pak K, Jeong DC, Han ME, Oh SO, Kim YH. The AP2M1 gene expression is a promising biomarker for predicting survival of patients with hepatocellular carcinoma. J Cell Biochem. 2019;120(3):4140–6.
Article
CAS
PubMed
Google Scholar
Xu Y, Chen Z, Zhang G, Xi Y, Sun R, Wang X, et al. HSP90B1 overexpression predicts poor prognosis in NSCLC patients. Tumour Biol. 2016;37(10):14321–8.
Article
CAS
PubMed
Google Scholar
Rodriguez-Vicente AE, Quwaider D, Benito R, Misiewicz-Krzeminska I, Hernandez-Sanchez M, de Coca AG, et al. MicroRNA-223 is a novel negative regulator of HSP90B1 in CLL. BMC Cancer. 2015;15:238.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fang C, Xu L, He W, Dai J, Sun F. Long noncoding RNA DLX6-AS1 promotes cell growth and invasiveness in bladder cancer via modulating the miR-223-HSP90B1 axis. Cell Cycle. 2019;18(23):3288–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Zhuang L, Szatmary P, Wen L, Sun H, Lu Y, et al. Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. Int J Med Sci. 2015;12(3):256–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obata Y, Horikawa K, Takahashi T, Akieda Y, Tsujimoto M, Fletcher JA, et al. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumours. ONCOGENE. 2017;36(26):3661–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92(4):1619–49.
Article
CAS
PubMed
Google Scholar
Hirota S, Nishida T, Isozaki K, Taniguchi M, Nakamura J, Okazaki T, et al. Gain-of-function mutation at the extracellular domain of KIT in gastrointestinal stromal tumours. J Pathol. 2001;193(4):505–10.
Article
CAS
PubMed
Google Scholar
Ge H, Yan Y, Wu D, Huang Y, Tian F. Potential role of LINC00996 in colorectal cancer: a study based on data mining and bioinformatics. Onco Targets Ther. 2018;11:4845–55.
Article
PubMed
PubMed Central
Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LJ, Kinzler KW. Cancer genome landscapes. SCIENCE. 2013;339(6127):1546–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001;28(1):29–35.
CAS
PubMed
Google Scholar
Oshimo Y, Kuraoka K, Nakayama H, Kitadai Y, Yoshida K, Chayama K, et al. Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer. 2004;112(6):1003–9.
Article
CAS
PubMed
Google Scholar
Liu S, Ren S, Howell P, Fodstad O, Riker AI. Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling. Pigment Cell Melanoma Res. 2008;21(5):545–58.
Article
CAS
PubMed
Google Scholar
Nagai H, Naka T, Terada Y, Komazaki T, Yabe A, Jin E, et al. Hypermethylation associated with inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human hepatoblastomas. J Hum Genet. 2003;48(2):65–9.
Article
CAS
PubMed
Google Scholar
Portales-Cervantes L, Haidl ID, Lee PW, Marshall JS. Virus-Infected Human Mast Cells Enhance Natural Killer Cell Functions. J INNATE IMMUN. 2017;9(1):94–108.
Article
CAS
PubMed
Google Scholar
Palma AM, Hanes MR, Marshall JS. Mast Cell Modulation of B Cell Responses: An Under-Appreciated Partnership in Host Defence. Front Immunol. 2021;12:718499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. NAT REV IMMUNOL. 2017;17(9):559–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen E, Soulieres D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. LANCET. 2019;393(10167):156–67.
Article
CAS
PubMed
Google Scholar
Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. LANCET ONCOL. 2016;17(7):956–65.
Article
CAS
PubMed
Google Scholar
Duffy MJ, Crown J. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients. Clin Chem. 2019;65(10):1228–38.
Article
CAS
PubMed
Google Scholar
Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niu B, Zhou F, Su Y, Wang L, Xu Y, Yi Z, et al. Different Expression Characteristics of LAG3 and PD-1 in Sepsis and Their Synergistic Effect on T Cell Exhaustion: A New Strategy for Immune Checkpoint Blockade. Front Immunol. 1888;2019:10.
Google Scholar
Bates AM, Lanzel EA, Qian F, Abbasi T, Vali S, Brogden KA. Cell genomics and immunosuppressive biomarker expression influence PD-L1 immunotherapy treatment responses in HNSCC-a computational study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(2):157–64.
Article
PubMed
PubMed Central
Google Scholar
Helgadottir H, Ghiorzo P, van Doorn R, Puig S, Levin M, Kefford R, et al. Efficacy of novel immunotherapy regimens in patients with metastatic melanoma with germline CDKN2A mutations. J Med Genet. 2020;57(5):316–21.
Article
CAS
PubMed
Google Scholar