Neufeld NJ, Elnahal SM, Alvarez RH. Cancer pain: a review of epidemiology, clinical quality and value impact. Future Oncol. 2017;13(9):833–41. https://doi.org/10.2217/fon-2016-0423.
Article
CAS
PubMed
Google Scholar
Bobeck EN, Schoo SM, Ingram SL, Morgan MM. Lack of Antinociceptive cross-tolerance with co-Administration of Morphine and Fentanyl into the periaqueductal gray of male Sprague-Dawley rats. J Pain. 2019;20(9):1040–7. https://doi.org/10.1016/j.jpain.2019.03.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong YP, Sun L, Liu XY, Liu RS. Switching from morphine to fentanyl attenuates the decline of μ-opioid receptor expression in periaqueductal gray of rats with morphine tolerance. Chin Med J. 2013;126(19):3712–6.
CAS
PubMed
Google Scholar
Xiao Y, Wu L, Zhou Q, Xiong W, Duan X, Huang X. A randomized clinical trial of the effects of ultra-low-dose naloxone infusion on postoperative opioid requirements and recovery. Acta Anaesthesiol Scand. 2015;59(9):1194–203. https://doi.org/10.1111/aas.12560.
Article
CAS
PubMed
Google Scholar
Wu L, Dong YP, Sun L, Sun L. Low concentration of Dezocine in combination with morphine enhance the postoperative analgesia for thoracotomy. J Cardiothorac Vasc Anesth. 2015;29(4):950–4. https://doi.org/10.1053/j.jvca.2014.08.012.
Article
CAS
PubMed
Google Scholar
Wu FX, Babazada H, Gao H, Huang XP, Xi CH, Chen CH, et al. Dezocine alleviates morphine-induced dependence in rats. Anesth Analg. 2019;128(6):1328–35. https://doi.org/10.1213/ANE.0000000000003365.
Article
CAS
PubMed
Google Scholar
Walker EA, Young AM. Differential tolerance to antinociceptive effects of mu opioids during repeated treatment with etonitazene, morphine, or buprenorphine in rats. Psychopharmacology. 2001;154(2):131–42. https://doi.org/10.1007/s002130000620.
Article
CAS
PubMed
Google Scholar
Yekkirala AS, Kalyuzhny AE, Portoghese PS. Standard opioid agonists activate heteromeric opioid receptors: evidence for morphine and [d-Ala (2)-MePhe (4)-Glyol (5)]enkephalin as selective μ-δ agonists. ACS Chem Neurosci. 2010;1(2):146–54. https://doi.org/10.1021/cn9000236.
Article
CAS
PubMed
Google Scholar
Aurilio B, Pace MC, Passavanti MB. Transdermal buprenorphine combined with spinal morphine and naropine for pain relief in chronic peripheral vasculopathy. Minerva Anestesiol. 2005;71(7–8):445–9.
CAS
PubMed
Google Scholar
Du BX, Song ZM, Wang K, Zhang H, Xu FY, Zou Z, et al. Butorphanol prevents morphine-induced pruritus without increasing pain and other side effects: a systematic review of randomized controlled trials. Can J Anaesth. 2013;60(9):907–17. https://doi.org/10.1007/s12630-013-9989-4.
Article
PubMed
Google Scholar
Zhao P, Wu Z, Li C, Yang G, Ding J, Wang K, et al. Postoperative analgesia using dezocine alleviates depressive symptoms after colorectal cancer surgery: a randomized, controlled, double-blind trial. PLoS One. 2020;15(5):e0233412. https://doi.org/10.1371/journal.pone.0233412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meuser T, Giesecke T, Gabriel A, Horsch M, Sabatowski R, Hescheler J, et al. Mu-opioid receptor mRNA regulation during morphine tolerance in the rat peripheral nervous system. Anesth Analg. 2003;97(5):1458–63. https://doi.org/10.1213/01.ANE.0000081721.75663.87.
Article
CAS
PubMed
Google Scholar
Li XY, Sun L, He J, Chen ZL, Zhou F, Liu XY, et al. The kappa-opioid receptor is upregulated in the spinal cord and locus ceruleus but downregulated in the dorsal root ganglia of morphine tolerant rats. Brain Res. 2010;1326:30–9. https://doi.org/10.1016/j.brainres.2010.02.070.
Article
CAS
PubMed
Google Scholar
Escudero-Lara A, Cabañero D, Maldonado R. Kappa opioid receptor modulation of endometriosis pain in mice. Neuropharmacology. 2021;108677:108677. https://doi.org/10.1016/j.neuropharm.2021.108677.
Article
CAS
Google Scholar
Guo G, Peng Y, Xiong B, Liu D, Bu H, Tian X, et al. Involvement of chemokine CXCL11 in the development of morphine tolerance in rats with cancer-induced bone pain. J Neurochem. 2017;141(4):553–64. https://doi.org/10.1111/jnc.13919.
Article
CAS
PubMed
Google Scholar
Honore P, Luger NM, Sabino MA, Schwei MJ, Rogers SD, Mach DB, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med. 2000;6(5):521–8. https://doi.org/10.1038/74999.
Article
CAS
PubMed
Google Scholar
Lee EJ, Park JS, Lee YY, Kim DY, Kang JL, Kim HS. Anti-inflammatory and anti-oxidant mechanisms of an MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary astrocytes: involvement of NF-κB, Nrf2, and PPAR-γ signaling pathways. J Neuroinflammation. 2018;15(1):326. https://doi.org/10.1186/s12974-018-1363-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bian X, Zhou R, Yang Y, Li P, Hang Y, Hu Y, et al. Divergent effect of Dezocine, morphine and Sufentanil on intestinal motor function in rats. Int J Med Sci. 2015;12(11):848–52. https://doi.org/10.7150/ijms.12616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabino MA, Mantyh PW. Pathophysiology of bone cancer pain. J Support Oncol. 2005;3(1):15–24.
CAS
PubMed
Google Scholar
von Moos R, Costa L, Ripamonti CI, Niepel D, Santini D. Improving quality of life in patients with advanced cancer: targeting metastatic bone pain. Eur J Cancer. 2017;71:80–94. https://doi.org/10.1016/j.ejca.2016.10.021.
Article
Google Scholar
Zacho HD, Mørch CD, Barsi T, Mortensen JC, Bertelsen H, Petersen LJ. Unexplained bone pain is an independent risk factor for bone metastases in newly diagnosed prostate Cancer: a prospective study. Urology. 2017;99:148–54. https://doi.org/10.1016/j.urology.2016.09.019.
Article
PubMed
Google Scholar
Mantyh PW. Bone cancer pain: from mechanism to therapy. Curr Opin Support Palliat Care. 2014;8(2):83–90. https://doi.org/10.1097/SPC.0000000000000048.
Article
PubMed
PubMed Central
Google Scholar
Dong C, Wu R, Wu J, Guo J, Wang F, Fu Y, et al. Evaluation of bone Cancer pain induced by different doses of Walker 256 mammary gland carcinoma cells. Pain Physician. 2016;19(7):E1063–77.
PubMed
Google Scholar
Aielli F, Ponzetti M, Rucci N. Bone Metastasis Pain, from the Bench to the Bedside. Int J Mol Sci. 2019;20(2):280.
Article
Google Scholar
Zajączkowska R, Kocot-Kępska M, Leppert W, Wordliczek J. Bone Pain in Cancer Patients: Mechanisms and Current Treatment. Int J Mol Sci. 2019;20(23):6047.
Article
Google Scholar
Zhu H, Chen Y, Huang S, Sun X. Interaction of analgesic effects of Dezocine and Sufentanil for relief of postoperative pain: a pilot study. Drug Des Devel Ther. 2020;14:4717–24. https://doi.org/10.2147/DDDT.S270478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gharagozlou P, Hashemi E, DeLorey TM, Clark JD, Lameh J. Pharmacological profiles of opioid ligands at kappa opioid receptors. BMC Pharmacol. 2006;6(1):3. https://doi.org/10.1186/1471-2210-6-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gharagozlou P, Demirci H, David Clark J, Lameh J. Activity of opioid ligands in cells expressing cloned mu opioid receptors. BMC Pharmacol. 2003;3(1):1. https://doi.org/10.1186/1471-2210-3-1.
Article
PubMed
PubMed Central
Google Scholar
Chen JC, Smith ER, Cahill M, Cohen R, Fishman JB. The opioid receptor binding of dezocine, morphine, fentanyl, butorphanol and nalbuphine. Life Sci. 1993;52(4):389–96. https://doi.org/10.1016/0024-3205(93)90152-S.
Article
CAS
PubMed
Google Scholar
Picker MJ. Discriminative stimulus effects of the mixed-opioid agonist/antagonist dezocine: cross-substitution by mu and delta opioid agonists. J Pharmacol Exp Ther. 1997;283(3):1009–17.
CAS
PubMed
Google Scholar
Morgan D, Cook CD, Smith MA, Picker MJ. An examination of the interactions between the antinociceptive effects of morphine and various mu-opioids: the role of intrinsic efficacy and stimulus intensity. Anesth Analg. 1999;88(2):407–13. https://doi.org/10.1097/00000539-199902000-00035.
Article
CAS
PubMed
Google Scholar
Zhang M, Wang K, Ma M, Tian S, Wei N, Wang G. Low-dose cannabinoid type 2 receptor agonist attenuates tolerance to repeated morphine administration via regulating μ-opioid receptor expression in Walker 256 tumor-bearing rats. Anesth Analg. 2016;122(4):1031–7. https://doi.org/10.1213/ANE.0000000000001129.
Article
CAS
PubMed
Google Scholar
Viet CT, Dang D, Aouizerat BE, Miaskowski C, Ye Y, Viet DT, et al. OPRM1 methylation contributes to opioid tolerance in Cancer patients. J Pain. 2017;18(9):1046–59. https://doi.org/10.1016/j.jpain.2017.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao Y, Gao Y, Yang L, Kong X, Yu J, Hou W, et al. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin). 2015;9(5):235–43. https://doi.org/10.1080/19336950.2015.1069450.
Article
Google Scholar
Liu R, Huang XP, Yeliseev A, Xi J, Roth BL. Novel molecular targets of dezocine and their clinical implications. Anesthesiology. 2014;120(3):714–23. https://doi.org/10.1097/ALN.0000000000000076.
Article
CAS
PubMed
Google Scholar
Spanagel R, Shippenberg TS. Modulation of morphine-induced sensitization by endogenous kappa opioid systems in the rat. Neurosci Lett. 1993;153(2):232–6. https://doi.org/10.1016/0304-3940(93)90329-J.
Article
CAS
PubMed
Google Scholar
Stoller DC, Sim-Selley LJ, Smith FL. Role of kappa and delta opioid receptors in mediating morphine-induced antinociception in morphine-tolerant infant rats. Brain Res. 2007;1142:28–36. https://doi.org/10.1016/j.brainres.2007.01.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cordeaux Y, Briddon SJ, Megson AE, McDonnell J, Dickenson JM, Hill SJ. Influence of receptor number on functional responses elicited by agonists acting at the human adenosine a (1) receptor: evidence for signaling pathway-dependent changes in agonist potency and relative intrinsic activity. Mol Pharmacol. 2000;58(5):1075–84. https://doi.org/10.1124/mol.58.5.1075.
Article
CAS
PubMed
Google Scholar
McDonald J, Barnes TA, Okawa H, Williams J, Calo G, Rowbotham DJ, et al. Partial agonist behaviour depends upon the level of nociceptin/orphanin FQ receptor expression: studies using the ecdysone-inducible mammalian expression system. Br J Pharmacol. 2003;140(1):61–70. https://doi.org/10.1038/sj.bjp.0705401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto J, Kawamata T, Niiyama Y, Omote K, Namiki A. Down-regulation of mu opioid receptor expression within distinct subpopulations of dorsal root ganglion neurons in a murine model of bone cancer pain. Neuroscience. 2008;151(3):843–53. https://doi.org/10.1016/j.neuroscience.2007.11.025.
Article
CAS
PubMed
Google Scholar
Nakamura A, Hasegawa M, Minami K, Kanbara T, Tomii T, Nishiyori A, et al. Differential activation of the μ-opioid receptor by oxycodone and morphine in pain-related brain regions in a bone cancer pain model. Br J Pharmacol. 2013;168(2):375–88. https://doi.org/10.1111/j.1476-5381.2012.02139.x.
Article
CAS
PubMed
Google Scholar
Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293(5528):311–5. https://doi.org/10.1126/science.1060952.
Article
CAS
PubMed
Google Scholar