Kazazian HH Jr, Moran JV. Mobile DNA in health and disease. N Engl J Med. 2017;377(4):361–70. https://doi.org/10.1056/NEJMra1510092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol. Spectr. 2015; 3. MDNA3–M2014. (doi: https://doi.org/10.1128/microbiolspec. MDNA3-0061-2014).
Huang CR, Burns KH, Boeke JD. Active transposition in genomes. Annu Rev Genet. 2012;46(1):651–75. https://doi.org/10.1146/annurev-genet-110711-155616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, Fitz Hugh W, Funke R. Initial sequencing and analysis of the human genome.2001.
Mandal PK, Kazazian HH. SnapShot: vertebrate transposons. Cell. 2008;135(1):192–192.e1. https://doi.org/10.1016/j.cell.2008.09.028.
Article
CAS
PubMed
Google Scholar
Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003;35(1):41–8. https://doi.org/10.1038/ng1223.
Article
CAS
PubMed
Google Scholar
Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH Jr. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet. 2011;20(17):3386–400. https://doi.org/10.1093/hmg/ddr245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M, et al. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res. 2012;40(4):1666–83. https://doi.org/10.1093/nar/gkr863.
Article
CAS
PubMed
Google Scholar
Esnault C, Maestre J, Heidmann T. Human LINE retrotransposons generate processed pseudogenes. Nat Genet. 2000;24(4):363–7. https://doi.org/10.1038/74184.
Article
CAS
PubMed
Google Scholar
Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci. 2003;100(9):5280–5. https://doi.org/10.1073/pnas.0831042100.
Article
CAS
PubMed
Google Scholar
Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O'Hara B, Rossiter JP, et al. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics. 1987;1(2):113–25. https://doi.org/10.1016/0888-7543(87)90003-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swergold GD. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol. 1990;10(12):6718–29. https://doi.org/10.1128/MCB.10.12.6718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr. High frequency retrotransposition in cultured mammalian cells. Cell. 1996;87(5):917–27. https://doi.org/10.1016/S0092-8674(00)81998-4.
Article
CAS
PubMed
Google Scholar
Khazina E, Weichenrieder O. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci. 2009;106(3):731–6. https://doi.org/10.1073/pnas.0809964106.
Article
PubMed
Google Scholar
Khazina E, Truffault V, Büttner R, Schmidt S, Coles M, Weichenrieder O. Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat Struct Mol Biol. 2011;18(9):1006–14. https://doi.org/10.1038/nsmb.2097.
Article
CAS
PubMed
Google Scholar
Martin SL, Bushman FD. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol. 2001;21(2):467–75. https://doi.org/10.1128/MCB.21.2.467-475.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathias SL, Scott AF, Kazazian HH, Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science. 1991;254(5039):1808–10. https://doi.org/10.1126/science.1722352.
Article
CAS
PubMed
Google Scholar
Feng Q, Moran JV, Kazazian HH Jr, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. 1996;87(5):905–16. https://doi.org/10.1016/S0092-8674(00)81997-2.
Article
CAS
PubMed
Google Scholar
Pizarro JG, Cristofari G. Post-transcriptional control of LINE-1 retrotransposition by cellular host factors in somatic cells. Frontiers Cell Develop Biol. 2016;4:14.
Article
Google Scholar
Goodier JL. Restricting retrotransposons: a review. Mob DNA. 2016;7(1):16. https://doi.org/10.1186/s13100-016-0070-z.
Article
PubMed
PubMed Central
Google Scholar
Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005;435(7044):903–10.
Article
CAS
Google Scholar
Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 2009;23(11):1303–12. https://doi.org/10.1101/gad.1803909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ, et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337(6097):967–71. https://doi.org/10.1126/science.1222077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB, et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 2012;22(12):2328–38. https://doi.org/10.1101/gr.145235.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodić N, Sharma R, Sharma R, Zampella J, Dai L, Taylor MS, et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am J Pathol. 2014;184(5):1280–6. https://doi.org/10.1016/j.ajpath.2014.01.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sur D, Kustwar RK, Budania S, Mahadevan A, Hancks DC, Yadav V, et al. Detection of the LINE-1 retrotransposon RNA-binding protein ORF1p in different anatomical regions of the human brain. Mob DNA. 2017;8(1):1–2.
Article
Google Scholar
Budania S, Sur D, Nangal J, Pilli S, Mukherjee K, Biswas M, et al. LINE-1 retrotransposon encoded ORF1p expression and promoter methylation in oral squamous cell carcinoma: a pilot study. Cancer Genet. 2020;244:21–9. https://doi.org/10.1016/j.cancergen.2020.01.050.
Article
CAS
PubMed
Google Scholar
Goodier JL, Ostertag EM, Engleka KA, Seleme MC, Kazazian HH Jr. A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet. 2004;13(10):1041–8. https://doi.org/10.1093/hmg/ddh118.
Article
CAS
PubMed
Google Scholar
Ergün S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F, Lauke H, et al. Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem. 2004;279(26):27753–63. https://doi.org/10.1074/jbc.M312985200.
Article
CAS
PubMed
Google Scholar
Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, et al. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet. 2010;6(10):e1001150. https://doi.org/10.1371/journal.pgen.1001150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandal PK, Ewing AD, Hancks DC, Kazazian HH Jr. Enrichment of processed pseudogene transcripts in L1-ribonucleoprotein particles. Hum Mol Genet. 2013;22(18):3730–48. https://doi.org/10.1093/hmg/ddt225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Dahlstrom JE, Chandra A, Board P, Rangasamy D. Prognostic value of LINE-1 retrotransposon expression and its subcellular localization in breast cancer. Breast Cancer Res Treat. 2012;136(1):129–42. https://doi.org/10.1007/s10549-012-2246-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sokolowski M, DeFreece CB, Servant G, Kines KJ, Dawn LD, Belancio VP. Development of a monoclonal antibody specific to the endonuclease domain of the human LINE-1 ORF2 protein. Mob DNA. 2014;5(1):1–3.
Article
Google Scholar
De Luca C, Guadagni F, Sinibaldi-Vallebona P, Sentinelli S, Gallucci M, Hoffmann A, et al. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation. Oncotarget. 2016;7(4):4048–61. https://doi.org/10.18632/oncotarget.6767.
Article
PubMed
Google Scholar
Ardeljan D, Wang X, Oghbaie M, Taylor MS, Husband D, Deshpande V, Steranka JP, Gorbounov M, Yang WR, Sie B, Larman HB. LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mob DNA 2020;11(1):1–9, 1, DOI: https://doi.org/10.1186/s13100-019-0191-2.
Malik HS, Burke WD, Eickbush TH. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol. 1999;16(6):793–805. https://doi.org/10.1093/oxfordjournals.molbev.a026164.
Article
CAS
PubMed
Google Scholar
Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W, Kazazian HH Jr. Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet. 1999;8(8):1557–60. https://doi.org/10.1093/hmg/8.8.1557.
Article
CAS
PubMed
Google Scholar
The PyMOL Molecular Graphic System, Version 2.0 Schrӧdinger, LLC.
Ostertag EM, LuningPrak ET, DeBerardinis RJ, Moran JV, Kazazian HH Jr. Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res. 2000;28(6):1418–23. https://doi.org/10.1093/nar/28.6.1418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Branciforte D, Martin SL. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol Cell Biol. 1994;14(4):2584–92. https://doi.org/10.1128/MCB.14.4.2584.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wylie A, Jones AE, D'Brot A, Lu WJ, Kurtz P, Moran JV, et al. p53 genes function to restrain mobile elements. Genes Dev. 2016;30(1):64–77. https://doi.org/10.1101/gad.266098.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet. 2020;52(3):306–19. https://doi.org/10.1038/s41588-019-0562-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shehee WR, Chao SF, Loeb DD, Comer MB, Hutchison CA III, Edgell MH. Determination of a functional ancestral sequence and definition of the 5′ end of A-type mouse L1 elements. J Mol Biol. 1987;196(4):757–67. https://doi.org/10.1016/0022-2836(87)90402-5.
Article
CAS
PubMed
Google Scholar
Kirilyuk A, Tolstonog GV, Damert A, Held U, Hahn S, Löwer R, et al. Functional endogenous LINE-1 retrotransposons are expressed and mobilized in rat chloroleukemia cells. Nucleic Acids Res. 2008;36(2):648–65. https://doi.org/10.1093/nar/gkm1045.
Article
CAS
PubMed
Google Scholar
Schauer SN, Carreira PE, Shukla R, Gerhardt DJ, Gerdes P, Sanchez-Luque FJ, et al. L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis. Genome Res. 2018;28(5):639–53. https://doi.org/10.1101/gr.226993.117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tubio JMC, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M, Gundem G, Pipinikas CP, Zamora J, Raine K, Menzies A, Roman-Garcia P, Fullam A, Gerstung M, Shlien A, Tarpey PS, Papaemmanuil E, Knappskog S, Van Loo P, Ramakrishna M, Davies HR, Marshall J, Wedge DC, Teague JW, Butler AP, Nik-Zainal S, Alexandrov L, Behjati S, Yates LR, Bolli N, Mudie L, Hardy C, Martin S, McLaren S, O’Meara S, Anderson E, Maddison M, Gamble S, Foster C, Warren AY, Whitaker H, Brewer D, Eeles R, Cooper C, Neal D, Lynch AG, Visakorpi T, Isaacs WB, Veer LV, Caldas C, Desmedt C, Sotiriou C, Aparicio S, Foekens JA, Eyfjörd JE, Lakhani SR, Thomas G, Myklebost O, Span PN, Børresen-Dale AL, Richardson AL, Van de Vijver M, Vincent-Salomon A, Van den Eynden GG, Flanagan AM, Futreal PA, Janes SM, Bova GS, Stratton MR, McDermott U, Campbell PJ; ICGC Breast Cancer Group; ICGC Bone Cancer Group; ICGC Prostate Cancer Group. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014; 345 (6196):1251343. doi: https://doi.org/10.1126/science.1251343. PMID: 25082706; PMCID: PMC4380235.
Scott EC, Gardner EJ, Masood A, Chuang NT, Vertino PM, Devine SE. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 2016;26(6):745–55. https://doi.org/10.1101/gr.201814.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shukla R, Upton KR, Muñoz-Lopez M, Gerhardt DJ, Fisher ME, Nguyen T, et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell. 2013;153(1):101–11. https://doi.org/10.1016/j.cell.2013.02.032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furlan C, Polesel J, Barzan L, Franchin G, Sulfaro S, Romeo S, et al. Prognostic significance of LINE-1 hypomethylation in oropharyngeal squamous cell carcinoma. Clin Epigenet. 2017;9(1):1–1.
Article
Google Scholar
Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer. 2009;124(1):81–7. https://doi.org/10.1002/ijc.23849.
Article
CAS
PubMed
Google Scholar
Wangsri S, Subbalekha K, Kitkumthorn N, Mutirangura A. Patterns and possible roles of LINE-1 methylation changes in smoke-exposed epithelia. PLoS One. 2012;7(9):e45292. https://doi.org/10.1371/journal.pone.0045292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, Minamoto T. Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non–small cell lung cancer. Clin Cancer Res. 2010;16(8):2418–26. https://doi.org/10.1158/1078-0432.CCR-09-2819.
Article
CAS
PubMed
Google Scholar
Harada K, Baba Y, Ishimoto T, Chikamoto A, Kosumi K, Hayashi H, et al. LINE-1 methylation level and patient prognosis in a database of 208 hepatocellular carcinomas. Ann Surg Oncol. 2015;22(4):1280–7. https://doi.org/10.1245/s10434-014-4134-3.
Article
PubMed
Google Scholar
Pisanic TR II, Asaka S, Lin SF, Yen TT, Sun H, Bahadirli-Talbott A, et al. Long interspersed nuclear element 1 Retrotransposons become deregulated during the development of ovarian Cancer precursor lesions. Am J Pathol. 2019;189(3):513–20. https://doi.org/10.1016/j.ajpath.2018.11.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenblatt MS. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54(18):4855–78.
CAS
PubMed
Google Scholar
Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170(6):1062–78. https://doi.org/10.1016/j.cell.2017.08.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall PA, Lane DP. p53 in tumour pathology: can we trust immunohistochemistry?—revisited! J Pathol. 1994;172(1):1–4. https://doi.org/10.1002/path.1711720103.
Article
CAS
PubMed
Google Scholar
Peng HQ, Hogg D, Malkin D, Bailey D, Gallie BL, Bulbul M, et al. Mutations of the p53 gene do not occur in testis cancer. Cancer Res. 1993;53(15):3574–8.
CAS
PubMed
Google Scholar