Jiao, Y., Widschwendter, M., Teschendorff, AE. A systems-level integrative framework for genome-wide DNA methylation and gene expression data identifies differential gene expression modules under epigenetic control. Bioinformatics. 2014; 30:2360–2366. doi: https://doi.org/10.1093/bioinformatics/btu316.
Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V, Tononi P, Pattini P, Moruzzi S, Campagnaro T, Conci S, Olivieri O, Corrocher R, Delledonne M, Choi S-W, Friso S. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenet. 2015;7:43. https://doi.org/10.1186/s13148-015-0077-1.
Article
CAS
Google Scholar
Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, Huang T, HM KS, Nephew KP. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics. 2009;2:34. https://doi.org/10.1186/1755-8794-2-34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das D, Ghosh S, Maitra A, Biswas NK, Panda CK, Roy B, Sarin R, Majumder PP. Epigenomic dysregulation-mediated alterations of key biological pathways and tumor immune evasion are hallmarks of gingivo-buccal oral cancer. Clin Epigenet. 2019;11(1):178. https://doi.org/10.1186/s13148-019-0782-2.
Article
CAS
Google Scholar
Ma X, Liu Z, Zhang Z, Huang X, Tang W. Multiple network algorithm for epigenetic modules via the integration of genome-wide DNA methylation and gene expression data. BMC Bioinformatics. 2017;18:72. https://doi.org/10.1186/s12859-017-1490-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnstone IM, Titterington DM. Statistical challenges of high-dimensional data. Phil Trans R Soc A. 2009;367:4237–53. https://doi.org/10.1098/rsta.2009.0159.
Article
PubMed
Google Scholar
Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics. 2012;99:323–9. https://doi.org/10.1016/j.ygeno.2012.04.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muttagi SS, Patil BR, Godhi AS, Arora DK, Hallikerimath SR, Kale AD. Clinico-pathological factors affecting lymph node yield in Indian patients with locally advanced squamous cell carcinoma of mandibular Gingivo-Buccal sulcus. Indian J Cancer. 2016;53:239–43. https://doi.org/10.4103/0019-509X.197724.
Article
CAS
PubMed
Google Scholar
Pathak KA, Gupta S, Talole S, Khanna V, Chaturvedi P, Deshpande MS, Pai PS, Chaukar DA, D’Cruz AK. Advanced squamous cell carcinoma of lower gingivobuccal complex: patterns of spread and failure. Head Neck. 2005;27:597–602. https://doi.org/10.1002/hed.20195.
Article
PubMed
Google Scholar
Esteller M. The necessity of a human epigenome project. Carcinogenesis. 2006;27(6):1121–5. https://doi.org/10.1093/carcin/bgl033.
Article
CAS
PubMed
Google Scholar
Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumors. 7. Oxford: Wiley-Blackwell; 2011. p. 336.
Google Scholar
Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE. Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol. 2015;16:14. https://doi.org/10.1186/s13059-015-0581-9.
Article
PubMed
PubMed Central
Google Scholar
Ma X, Wang Y-W, Zhang MQ, Gazdar AF. DNA methylation data analysis and its application to cancer research. Epigenomics. 2013;5(3):301–16. https://doi.org/10.2217/epi.13.26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Everson TM, Lyons G, Zhang H, Soto-Ramírez N, Lockett GA, Patil VK, Merid SK, Sӧderhӓll C, Melén E, Holloway JW, Arshad SH, Karmaus W. DNA methylation loci associated with atopy and high serum IgE: a genome-wide application of recursive Random Forest feature selection. Genome Med. 2015;7:89. https://doi.org/10.1186/s13073-015-0213-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naue J, Hoefsloot HCJ, Mook ORF, Rijlaarsdam-Hoekstra L, van der Zwalm MCH, Henneman P, Kloosterman AD, Verschure PJ. Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression. Forensic Sci Int. 2017;31:19–28. https://doi.org/10.1016/j.fsigen.2017.07.015.
Article
CAS
Google Scholar
Houseman EA, Christensen BC, Yeh R-F, Marsit CJ, Karagas MR, Wrensch M, Nelson HH, Wiemels J, Zheng S, Wiencke JK, Kelsey KT. Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics. 2018;9:365. https://doi.org/10.1186/1471-2105-9-365.
Article
CAS
Google Scholar
Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh R-F, Wiencke JK, Kelsey KT. Aging and Environmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island Context. Plos Genet. 2009;5(8):e1000602. https://doi.org/10.1371/journal.pgen.1000602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Nephew K, Kim S. A novel k-mer mixture logistic regression for methylation susceptibility modeling of CpG dinucleotides in human gene promoters. BMC Bioinformatics. 2012;13:S15. https://doi.org/10.1186/1471-2105-13-S3-S15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Archer KJ, Kimes RV. Empirical characterization of random forest variable importance measures. Comput Stat Data Anal. 2008;52(4):2249–60. https://doi.org/10.1016/j.csda.2007.08.015.
Article
Google Scholar
Deng H, Runger G. Gene selection with guided regularized random forest. Pattern Recogn. 2013;46:3483–9. https://doi.org/10.1016/j.patcog.2013.05.018.
Article
Google Scholar
Strobl, C., Boulesteix, A., Kneib, T., Augustin, T., Zeileis, A Conditional variable importance for random forests BMC Bioinformatics 2008; 9:307. doi: https://doi.org/10.1186/1471-2105-9-307.
Grömping U. Variable importance assessment in regression: linear regression versus random Forest. Am Stat. 2009;63(4):308–19. https://doi.org/10.1198/tast.2009.08199.
Article
Google Scholar
Strobl C, Boulesteix A, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics. 2007;8:25. https://doi.org/10.1186/1471-2105-8-25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh, S., Chan C-KK. Analysis of RNA-Seq Data Using TopHat and Cufflinks. Methods Mol Biol. 2016; 1374:339–361. doi: https://doi.org/10.1007/978-1-4939-3167-5_18.
Chu Y, Corey DR. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Therapeutics. 2012;22(4):271–4. https://doi.org/10.1089/nat.2012.0367.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7:562–78. https://doi.org/10.1038/nprot.2012.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gelfman S, Cohen N, Yearin A, Ast G. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon–intron structure. Genome Res. 2013;23:789–99. https://doi.org/10.1101/gr.143503.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lokk K, Modhukur V, Rajashekar B, Martens K, Magi R, Kolde R, Koltsina M, Nilsson TK, Vilo J, Salumets A, Tonisson N. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15:3248. https://doi.org/10.1186/gb-2014-15-4-r54.
Article
CAS
Google Scholar
Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM. DNA Methylation of the First Exon Is Tightly Linked to Transcriptional Silencing. Plos One. 2011;6(1):e14524. https://doi.org/10.1371/journal.pone.0014524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Tian Y, Wang J, Sun Z, Zhu Y. Genome-wide analysis reveals the association between alternative splicing and DNA methylation across human solid tumors. BMC Med Genomics. 2020;13(4). https://doi.org/10.1186/s12920-019-0654-9.
Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan I. On the presence and role of human gene-body DNA methylation. Oncotarget. 2012;3:462–74. https://doi.org/10.18632/oncotarget.497.
Article
PubMed
PubMed Central
Google Scholar
Yang, X., Han, H., Carvalho D., D, D., Lay, F., D., Jones, P., A., Liang G. Gene body methylation can Alter gene expression and is a therapeutic target in Cancer. Cancer Cell 2014; 26:1–14. doi: https://doi.org/10.1016/j.ccr.2014.07.028.
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, Pages F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3. https://doi.org/10.1093/bioinformatics/btp101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang C-Y, Chan C-Y, Chou I-T, Lien C-H, Hung H-C, Lee M-F. Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem. 2013;24(9):1596–603. https://doi.org/10.1016/j.jnutbio.2013.01.010.
Article
CAS
PubMed
Google Scholar
Wong TL, Che N, Ma S. Reprogramming of central carbon metabolism in cancer stem cells. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2017;1863:1728–38. https://doi.org/10.1016/j.bbadis.2017.05.012.
Article
CAS
Google Scholar
Li, Z., Tognon, CE, Godinho, FJ, Yasaitis L, Hock H, Herschkowitz JI, Lannon CL, Cho E, Kim S-J, Bronson RT, Perou CM, Sorensen PH, Orkin SH. ETV6-NTRK3 Fusion Oncogene Initiates Breast Cancer from Committed Mammary Progenitors via Activation of AP1 Complex. Cancer Cell. 2007; 12:542–558. doi: https://doi.org/10.1016/j.ccr.2007.11.012.
Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, Becker L, Carneiro F, MacPherson N, Horsman D, Poremba C, Sorensen PHB. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76. https://doi.org/10.1016/S1535-6108(02)00180-0.
Article
CAS
PubMed
Google Scholar
Xiong D, Sheng Y, Ding S, Chen J, Tan X, Zeng T, Qin D, Zhu L, Huang A, Tang H. LINC00052 regulates the expression of NTRK3 by miR-128 and miR-485-3p to strengthen HCC cells invasion and migration. Oncotarget. 2016;7(30):47593–608. https://doi.org/10.18632/oncotarget.10250.
Article
PubMed
PubMed Central
Google Scholar
Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM, Wang J, Lutterbaugh JD, Markowitz SD, Grady WM. NTRK3 Is a Potential Tumor Suppressor Gene Commonly Inactivated by Epigenetic Mechanisms in Colorectal Cancer. Plos Genet. 2013;9(7):e1003552. https://doi.org/10.1371/journal.pgen.1003552.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayashi K, Jutabha P, Endou H, Anzai N. C-Myc is crucial for the expression of LAT1 in MIA Paca-2 human pancreatic cancer cells. Oncol Rep. 2012;28(3):862–6. https://doi.org/10.3892/or.2012.1878.
Article
CAS
PubMed
Google Scholar
Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004;24:5923–36. https://doi.org/10.1128/MCB.24.13.5923-5936.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirza, Y., Ali, S., M., A., Awan, M., S., Idress, R., Naeem, S., Zahid, N., Qadeer, U. Overexpression of EGFR in Oral premalignant lesions and OSCC and its impact on survival and recurrence. Oncomedicine. 2018; 3:28–36. doi: https://doi.org/10.7150/oncm.22614.
Lv X-X, Zheng X-Y, Yu J-J, Ma H-R, Hua C, Gao R-T. EGFR enhances the stemness and progression of oral cancer through inhibiting autophagic degradation of SOX2. Cancer Med. 2019;00:1–10. https://doi.org/10.1002/cam4.2772.
Article
CAS
Google Scholar
Wilson KJ, Mill C, Lambert S, Buchman J, Wilson TR, Hernandez-Gordillo V, Gallo RM, LMC A, Settleman J, Riese DJ II. EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors. 2012;30(2):107–16. https://doi.org/10.3109/08977194.2011.649918.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121:29–40. https://doi.org/10.1016/j.pharmthera.2008.09.005.
Article
CAS
PubMed
Google Scholar
Heiden, M., G., V., Cantley, L., C., Thompson, C., B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324(5930):1029–1033. doi: https://doi.org/10.1126/science.1160809.
Bhutia, Y., D., Ganapathy, V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta (BBA) – Mol Cell Res 2016; 1863(10):2531–2539. doi: https://doi.org/10.1016/j.bbamcr.2015.12.017.
Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. Glutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth. Front Oncol. 2017;7(306). https://doi.org/10.3389/fonc.2017.00306.
Richardson AD, Yang C, Osterman A, Smith JW. Central carbon metabolism in the progression of mammary carcinoma. Breast Cancer Res Treat. 2008;110:297–307. https://doi.org/10.1007/s10549-007-9732-3.
Article
CAS
PubMed
Google Scholar
Campbell PJ, Getz G, Korbel JO, et al. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93. https://doi.org/10.1038/s41586-020-1969-6.
Article
CAS
Google Scholar