Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–87 Available from: https://www.sciencedirect.com/science/article/pii/S0959804918309559.
Article
CAS
Google Scholar
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E35–E386. Available from:. https://doi.org/10.1002/ijc.29210.
Article
CAS
Google Scholar
Colombo P, Fabbro M, Theillet C, Bibeau F, Rouanet P, Ray-Coquard I. Sensitivity and resistance to treatment in the primary management of epithelial ovarian cancer. Critical reviews in oncology/hematology 2014;89:207. Available from. http://www.ncbi.nlm.nih.gov/pubmed/24071502.
Article
Google Scholar
Prat J, D'Angelo E, Espinosa I. Ovarian carcinomas: at least five different diseases with distinct histological features and molecular genetics. Hum Pathol. 2018;80:11–27 Available from: https://www.sciencedirect.com/science/article/pii/S0046817718302302.
Article
CAS
Google Scholar
Bouchard-Fortier G, Panzarella T, Rosen B, Chapman W, Gien L. Endometrioid carcinoma of the ovary: outcomes compared to serous carcinoma after 10 years of follow-up. J Obstet Gynaecol Can. 2016;39:34–41 Available from: https://www.clinicalkey.es/playcontent/1-s2.0-S1701216316397900.
Article
Google Scholar
Lancaster J, Dressman H, Clarke J, Sayer R, Martino M, Cragun J, et al. Identification of genes associated with ovarian cancer metastasis using microarray expression analysis. Int J Gynecol Cancer 2006;16:1733–1745. Available from: http://ovidsp.ovid.com/ovidweb.cgi? T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00009577–200609000-00002.
Malek JA, Martinez A, Mery E, Ferron G, Huang R, Raynaud C, et al. Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis. J Transl Med. 2012;10:121 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22687175.
Article
CAS
Google Scholar
Brodsky AS, Fischer A, Miller DH, Vang S, MacLaughlan S, Wu H, et al. Expression profiling of primary and metastatic ovarian tumors reveals differences indicative of aggressive disease. PloS one. 2014;9:e94476 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24732363.
Article
Google Scholar
Wang J, Dean DC, Hornicek FJ, Shi H, Duan Z. RNA sequencing (RNA-seq) and its application in ovarian cancer. Gynecol Oncol. 2019;152:194–201 Available from: https://www.sciencedirect.com/science/article/pii/S0090825818312836.
Article
CAS
Google Scholar
Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14:5198–208 Available from: http://clincancerres.aacrjournals.org/content/14/16/5198.abstract.
Article
CAS
Google Scholar
Bell D, Berchuck A, Birrer M, Chien J, Dao F, Dhir R, et al. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15 Available from: http://www.narcis.nl/publication/RecordID/oai:pure.rug.nl:publications%2F33430660-3aa7-45f5-a1fc-ffdef7fd2894.
Article
CAS
Google Scholar
Kaikkonen MU, Niskanen H, Romanoski CE, Kansanen E, Kivelä AM, Laitalainen J, et al. Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization. Nucleic acids research 2014;42:12570-84. Available from. http://www.ncbi.nlm.nih.gov/pubmed/25352550.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001;25:402-8. Available from. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
Google Scholar
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89 Available from: https://www.sciencedirect.com/science/article/pii/S1097276510003667.
Article
CAS
Google Scholar
Anders S, Mccarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, et al. Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nature protocols 2013;8:1765. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23975260.
Article
Google Scholar
de Hoon M, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics 2004;20:1453-4. Available from. http://www.ncbi.nlm.nih.gov/pubmed/14871861.
Article
CAS
Google Scholar
Saldanha AJ. Java treeview--extensible visualization of microarray data. Bioinformatics 2004;20:3246-8. Available from. http://www.ncbi.nlm.nih.gov/pubmed/15180930.
Article
CAS
Google Scholar
Sherman BT, Lempicki RA, Huang DW. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57. Available from:. https://doi.org/10.1038/nprot.2008.211.
Article
CAS
Google Scholar
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23323831.
Article
Google Scholar
Georges A, L'Hôte D, Todeschini AL, Auguste A, Legois B, Zider A, et al. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells. eLife. 2014;3:e04207 Available from: https://www.ncbi.nlm.nih.gov/pubmed/25369636.
Article
Google Scholar
Nicol B, Grimm SA, Gruzdev A, Scott GJ, Ray MK, Yao HH. Genome-wide identification of FOXL2 binding and characterization of FOXL2 feminizing action in the fetal gonads. Human molecular genetics. 2018;27:4273–87 Available from: https://www.ncbi.nlm.nih.gov/pubmed/30212841.
Article
CAS
Google Scholar
Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–64 Available from: https://www.clinicalkey.es/playcontent/1-s2.0-S0002944010601605.
Article
Google Scholar
Ross KN, Ramaswamy S, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33:49–54. Available from:. https://doi.org/10.1038/ng1060.
Article
CAS
PubMed
Google Scholar
Lentjes MH, Niessen HE, Akiyama Y, de Bruïne AP, Melotte V, van Engeland M. The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med. 2016;18:e3 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26953528.
Article
Google Scholar
Cai KQ, Caslini C, Capo-chichi CD, Slater S, Smith ER, Wu H, et al. Loss of GATA4 and GATA6 expression specifies ovarian cancer histological subtypes and precedes neoplastic transformation of ovarian surface epithelia, PLoS one. 2009;4:e6454 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19649254.
Article
Google Scholar
Wakana K, Akiyama Y, Aso T, Yuasa Y. Involvement of GATA-4/−5 transcription factors in ovarian carcinogenesis. Cancer Lett. 2006;241:281–8 Available from: http://www.sciencedirect.com/science/article/pii/S0304383505009584.
Article
CAS
Google Scholar
Chmelarova M, Dvorakova E, Spacek J, Laco J, Palicka V. Importance of promoter methylation of GATA4 gene in epithelial ovarian cancer. Biomedical papers of the medical Faculty of the University Palacký, Olomouc, Czechoslovakia 2013;157:294. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24145767.
Article
CAS
Google Scholar
McEachin MD, Xu X, Santoiainni RA, Lawson D, Cotsonis G, Cohen C. GATA-4 and GATA-6 expression in human ovarian surface epithelial carcinoma. Appl Immunohistochem Mol Morphol. 2008;16:153–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18227727.
Article
CAS
Google Scholar
Bashamboo A, Eozenou C, Rojo S, McElreavey K. Anomalies in human sex determination provide unique insights into the complex genetic interactions of early gonad development. Clin Genet. 2017;91:143–56. Available from:. https://doi.org/10.1111/cge.12932/abstract.
Article
CAS
PubMed
Google Scholar
Hu Z-y, Tang L-d, Zhang H-y, Niu J-y, Lou M. Clinicopathological significance of steroidogenic factor-1 expression in ovarian cancer versus ovarian sex cord stromal tumor. Tumor Biol 2015;36:1429-1435. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25604140.
Article
CAS
Google Scholar
Lourenco D, Brauner R, Lin L, De Perdigo A, Weryha G, Muresan M, et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360:1200–10 Available from: http://content.nejm.org/cgi/content/abstract/360/12/1200.
Article
CAS
Google Scholar
Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357:660 Available from: https://research.chalmers.se/publication/251875.
Article
CAS
Google Scholar
Georges A, Auguste A, Bessière L, Vanet A, Todeschini A, Veitia RA. FOXL2: a central transcription factor of the ovary. J Mol Endocrinol. 2014;52:R1–R33 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24049064.
Google Scholar
Alexiadis M, Chu S, Leung D, Gould JA, Jobling T, Fuller PJ. Transcriptomic analysis of stage 1 versus advanced adult granulosa cell tumors. Oncotarget. 2016;7:14207 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26893359.
Article
Google Scholar
Fujisawa M, Moh-Moh-Aung A, Zeng Z, Yoshimura T, Wani Y, Matsukawa A. Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: a histopathological study. PLoS one, Available from. 2018;13:e0205494 https://www.ncbi.nlm.nih.gov/pubmed/30304016.
Article
Google Scholar
Shih AJ, Menzin A, Whyte J, Lovecchio J, Liew A, Khalili H, et al. Identification of grade and origin specific cell populations in serous epithelial ovarian cancer by single cell RNA-seq. PLoS one. 2018;13:e0206785 Available from: https://www.ncbi.nlm.nih.gov/pubmed/30383866.
Article
Google Scholar
Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR, Dering J, et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J Natl Cancer Inst. 2014;106:dju249 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25269487.
Article
Google Scholar
Wang C, Armasu SM, Kalli KR, Maurer MJ, Heinzen EP, Keeney GL, et al. Pooled clustering of high-grade serous ovarian cancer gene expression leads to novel consensus subtypes associated with survival and surgical outcomes. Clinical Cancer research : an official journal of the American Association for Cancer Research 2017;23:4077-4085. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28280090.
Article
CAS
Google Scholar
Wang X, Wang S-s, Zhou L, Yu L, Zhang L-m. A network-pathway based module identification for predicting the prognosis of ovarian cancer patients. J Ovarian Res 2016;9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093979/.
Sunde JS, Donninger H, Wu K, Johnson ME, Pestell RG, Rose GS, et al. Expression profiling identifies altered expression of genes that contribute to the inhibition of transforming growth factor-{beta} signaling in ovarian cancer. Cancer Res. 2006;66:8404–12 Available from: http://cancerres.aacrjournals.org/cgi/content/abstract/66/17/8404.
Article
CAS
Google Scholar
Liu T, Yu N, Ding F, Wang S, Li S, Zhang X, et al. Verifying the markers of ovarian cancer using RNA-seq data. Mol Med Rep. 2015;12:1125–30 Available from: https://www.spandidos-publications.com/mmr/12/1/1125.
Article
CAS
Google Scholar
Wang X, Han L, Zhou L, Wang L, Zhang L. Prediction of candidate RNA signatures for recurrent ovarian cancer prognosis by the construction of an integrated competing endogenous RNA network. Oncol reports. 2018;40:2659–73 Available from: https://www.ncbi.nlm.nih.gov/pubmed/30226545.
CAS
Google Scholar
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery. 2012;2:401–4 Available from: https://www.ncbi.nlm.nih.gov/pubmed/22588877.
Article
Google Scholar
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1 Available from: https://www.ncbi.nlm.nih.gov/pubmed/23550210.
Article
Google Scholar