Jafari SH, Saadatpour Z, Salmaninejad A, Momeni F, Mokhtari M, Nahand JS, et al. Breast cancer diagnosis: imaging techniques and biochemical markers. J Cell Physiol. 2018;233(7):5200–13.
Article
CAS
PubMed
Google Scholar
Ju J, Zhu AJ, Yuan P. Progress in targeted therapy for breast cancer. Chronic diseases and translational medicine. 2018;4(3):164–75.
Article
PubMed
PubMed Central
Google Scholar
Vranic S, Palazzo J, Sanati S, Florento E, Contreras E, Xiu J, et al. Potential novel therapy targets in neuroendocrine carcinomas of the breast. Clinical breast cancer. 2018.
Grolla AA, Travelli C, Genazzani AA, Sethi JK. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br J Pharmacol. 2016;173(14):2182–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shackelford RE, Mayhall K, Maxwell NM, Kandil E, Coppola D. Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes & cancer. 2013;4(11–12):447–56.
Article
CAS
Google Scholar
Sampath D, Zabka TS, Misner DL, O'Brien T, Dragovich PS. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol Ther. 2015;151:16–31.
Article
CAS
PubMed
Google Scholar
Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Lüscher B, et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci. 2012;109(4):E187.
Article
CAS
PubMed
Google Scholar
Zangooei M, Nourbakhsh M, Ghahremani MH, Meshkani R, Khedri A, Shadboorestan A, et al. Investigating the effect of visfatin on ERalpha phosphorylation (Ser118 and Ser167) and ERE-dependent transcriptional activity. EXCLI J. 2018;17:516–25.
PubMed
PubMed Central
Google Scholar
Chini CC, Guerrico AM, Nin V, Camacho-Pereira J, Escande C, Barbosa MT, et al. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(1):120–30.
Article
CAS
Google Scholar
Folgueira MA, Carraro DM, Brentani H, Patrao DF, Barbosa EM, Netto MM, et al. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005;11(20):7434–43.
Article
CAS
Google Scholar
Noruzi S, Azizian M, Mohammadi R, Hosseini SA, Rashidi B, Mohamadi Y, et al. Micro-RNAs as critical regulators of matrix metalloproteinases in cancer. Journal of cellular biochemistry. 2018.
Keshavarz M, Dianat-Moghadam H, Sofiani VH, Karimzadeh M, Zargar M, Moghoofei M, et al. miRNA-based strategy for modulation of influenza a virus infection. Epigenomics. 2018;10(6):829–44.
Article
CAS
PubMed
Google Scholar
Wang W, Luo YP. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 2015;16(1):18–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Fei D, Zong S, Fan Z. MicroRNA-154 inhibits growth and invasion of breast cancer cells through targeting E2F5. Am J Transl Res. 2016;8(6):2620–30.
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Peng B, Wang D, Ma X, Jiang D, Zhao J, et al. Human tumor microRNA signatures derived from large-scale oligonucleotide microarray datasets. Int J Cancer. 2011;129(7):1624–34.
Article
CAS
PubMed
Google Scholar
Zhou H, Zhang M, Yuan H, Zheng W, Meng C, Zhao D. MicroRNA-154 functions as a tumor suppressor in osteosarcoma by targeting Wnt5a. Oncol Rep. 2016;35(3):1851–8.
Article
CAS
PubMed
Google Scholar
Pang X, Huang K, Zhang Q, Zhang Y, Niu J. miR-154 targeting ZEB2 in hepatocellular carcinoma functions as a potential tumor suppressor. Oncol Rep. 2015;34(6):3272–9.
Article
CAS
PubMed
Google Scholar
Mian C, Pennelli G, Fassan M, Balistreri M, Barollo S, Cavedon E, et al. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid : official journal of the American Thyroid Association. 2012;22(9):890–6.
Article
CAS
Google Scholar
Xin C, Zhang H, Liu Z. miR-154 suppresses colorectal cancer cell growth and motility by targeting TLR2. Mol Cell Biochem. 2014;387(1–2):271–7.
Article
CAS
PubMed
Google Scholar
Lin X, Yang Z, Zhang P, Shao G. miR-154 suppresses non-small cell lung cancer growth in vitro and in vivo. Oncol Rep. 2015;33(6):3053–60.
Article
CAS
PubMed
Google Scholar
Hesari Z, Nourbakhsh M, Hosseinkhani S, Abdolvahabi Z, Alipour M, Tavakoli-Yaraki M, et al. Down-regulation of NAMPT expression by mir-206 reduces cell survival of breast cancer cells. Gene. 2018.
Zhou SJ, Bi TQ, Qin CX, Yang XQ, Pang K. Expression of NAMPT is associated with breast invasive ductal carcinoma development and prognosis. Oncol Lett. 2018;15(5):6648–54.
PubMed
PubMed Central
Google Scholar
Qin C, Zhao Y, Gong C, Yang Z. MicroRNA-154/ADAM9 axis inhibits the proliferation, migration and invasion of breast cancer cells. Oncol Lett. 2017;14(6):6969–75.
PubMed
PubMed Central
Google Scholar
Kai Y, Qiang C, Xinxin P, Miaomiao Z, Kuailu L. Decreased miR-154 expression and its clinical significance in human colorectal cancer. World journal of surgical oncology. 2015;13(1):195.
Article
PubMed
PubMed Central
Google Scholar
Qiao W, Cao N, Yang L. MicroRNA-154 inhibits the growth and metastasis of gastric cancer cells by directly targeting MTDH. Oncol Lett. 2017;14(3):3268–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang L, Wu L, Wu J. Downregulation of miR-154 in human glioma and its clinicopathological and prognostic significance. J Int Med Res. 2016;44(5):994–1001.
Article
PubMed
PubMed Central
Google Scholar
Liu S, Yang Y, Chen L, Liu D, Dong H. MicroRNA-154 functions as a tumor suppressor in non-small cell lung cancer through directly targeting B-cell-specific Moloney murine leukemia virus insertion site 1. Oncol Lett. 2018;15(6):10098–104.
PubMed
PubMed Central
Google Scholar
Hong S, Park C, Kim S, Nam Y, Yu J, Shin J, et al. NAMPT suppresses glucose deprivation-induced oxidative stress by increasing NADPH levels in breast cancer. Oncogene. 2016;35(27):3544.
Article
CAS
PubMed
Google Scholar
Kim JG, Kim EO, Jeong BR, Min YJ, Park JW, Kim ES, et al. Visfatin stimulates proliferation of MCF-7 human breast cancer cells. Mol Cell. 2010;30(4):341–5.
Article
CAS
Google Scholar
Lee Y-C, Yang Y-H, Su J-H, Chang H-L, Hou M-F, Yuan S-SF. High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiology and Prevention Biomarkers. 2011.
Zhou T, Wang T, Garcia JG. Expression of nicotinamide phosphoribosyltransferase-influenced genes predicts recurrence-free survival in lung and breast cancers. Sci Rep. 2014;4:6107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park H, Lee MJ, Jeong JY, Choi MC, Jung SG, Joo WD, et al. Dysregulated microRNA expression in adenocarcinoma of the uterine cervix: clinical impact of miR-363-3p. Gynecol Oncol. 2014;135(3):565–72.
Article
CAS
PubMed
Google Scholar
Gholinejad Z, Kheiripour N, Nourbakhsh M, Ilbeigi D, Behroozfar K, Hesari Z, et al. Extracellular NAMPT/Visfatin induces proliferation through ERK1/2 and AKT and inhibits apoptosis in breast cancer cells. Peptides. 2017;92(Supplement C):9–15.
Article
CAS
PubMed
Google Scholar
Behrouzfar K, Alaee M, Nourbakhsh M, Gholinejad Z, Golestani A. Extracellular NAMPT/visfatin causes p53 deacetylation via NAD production and SIRT1 activation in breast cancer cells. Cell Biochem Funct. 2017;35(6):327–33.
Article
CAS
PubMed
Google Scholar
Zhang Q, Shen Y, Jiang Y, Zhao S, Zhou D, Xu N. Overexpression of miR-182 inhibits ossification of ligamentum flavum cells by targeting NAMPT. Exp Cell Res. 2018;367(2):119–31.
Article
CAS
PubMed
Google Scholar
Li Y, Ke J, Peng C, Wu F, Song Y. MicroRNA-300/NAMPT regulates inflammatory responses through activation of AMPK/mTOR signaling pathway in neonatal sepsis. Biomed Pharmacother. 2018;108:271–9.
Article
CAS
PubMed
Google Scholar
Choi SE, Fu T, Seok S, Kim DH, Yu E, Lee KW, et al. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell. 2013;12(6):1062–72.
Article
CAS
PubMed
Google Scholar
Ju H-Q, Zhuang Z-N, Li H, Tian T, Lu Y-X, Fan X-Q, et al. Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer. Cancer Lett. 2016;379(1):1–11.
Article
CAS
PubMed
Google Scholar
Zhang C, Tong J, Huang G. Nicotinamide phosphoribosyl transferase (Nampt) is a target of microRNA-26b in colorectal cancer cells. PLoS One. 2013;8(7):e69963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao H, Chen J, Chen T, Zhao S, Machado RF. Microrna-410 Is Downregulated By Hypoxia And VEGF Inhibits Proliferation Of Pulmonary Artery Smooth Muscle Cells And Pulmonary Artery Endothelial Cells Via Regulation Of Nicotinamide Phosphoribosyl Transferase. B71 PULMONARY HYPERTENSION LIFE: ANIMAL MODELS AND EX VIVO STUDIES IN PULMONARY HYPERTENSION: American Thoracic Society; 2017. p. A4217-A.
Chen X-Y, Zhang H-S, Wu T-C, Sang W-W, Ruan Z. Down-regulation of NAMPT expression by miR-182 is involved in tat-induced HIV-1 long terminal repeat (LTR) transactivation. Int J Biochem Cell Biol. 2013;45(2):292–8.
Article
CAS
PubMed
Google Scholar
Sawicka-Gutaj N, Waligórska-Stachura J, Andrusiewicz M, Biczysko M, Sowiński J, Skrobisz J, et al. Nicotinamide phosphorybosiltransferase overexpression in thyroid malignancies and its correlation with tumor stage and with survivin/survivin DEx3 expression. Tumor Biol. 2015;36(10):7859–63.
Article
CAS
Google Scholar
Alaee M, Khaghani S, Behroozfar K, Hesari Z, Ghorbanhosseini SS, Nourbakhsh M. Inhibition of nicotinamide phosphoribosyltransferase induces apoptosis in estrogen receptor-positive MCF-7 breast cancer cells. J Breast Cancer. 2017;20(1):20–6.
Article
PubMed
PubMed Central
Google Scholar
Allen KE, Weiss GJ. Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther. 2010;9(12):3126–36.
Article
CAS
PubMed
Google Scholar
Hu S, Wang C, Huang Z, Liu F, Xu C, Li X, et al. miR-760 mediates chemoresistance through inhibition of epithelial mesenchymal transition in breast cancer cells. Eur Rev Med Pharmacol Sci. 2016;20(23):5002–8.
PubMed
Google Scholar
Yuan Y, Yao YF, Hu SN, Gao J, Zhang L-L. MiR-133a is functionally involved in doxorubicin-resistance in breast cancer cells MCF-7 via its regulation of the expression of uncoupling protein 2. PLoS One. 2015;10(6):e0129843.
Article
PubMed
PubMed Central
CAS
Google Scholar